IOWA STATE UNIVERSITY

Digital Repository

) . . Towa State University Capstones, Theses and
Retrospective Theses and Dissertations y-ap ' .
Dissertations

1983

Theory and application of collision integrals for
rigid ovaloids

Robert G. Cole
Towa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd
& Part of the Physical Chemistry Commons

Recommended Citation

Cole, Robert G., "Theory and application of collision integrals for rigid ovaloids " (1983). Retrospective Theses and Dissertations. 7635.
https://lib.dr.iastate.edu/rtd/7635

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at lowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University

Digital Repository. For more information, please contact digirep@iastate.edu.

www.manharaa.com



http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F7635&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F7635&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F7635&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F7635&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F7635&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F7635&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/139?utm_source=lib.dr.iastate.edu%2Frtd%2F7635&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/7635?utm_source=lib.dr.iastate.edu%2Frtd%2F7635&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

INFORMATION TO USERS

This reproduction was made from a copy of a document sent to us for microfilming.
While the most advanced technology has been used to photograph and reproduce
this document, the quality of the reproduction is heavily dependent upon the
quality of the material submitted. :

The following explanation of techniques is provided to help clarify markings or
notations which may appear on this reproduction.

1.

The sign or “target” for pages apparently lacking from the document
photographed is “Missing Page(s)”. If it was possible to obtain the missing
page(s) or section, they are spliced into the film along with adjacent pages. This
may have necessitated cutting through an image and duplicating adjacent pages
to assure complete continuity.

. When an image on the film is obliterated with a round black mark, it is an

indication of either blurred copy because of movement during exposure,
duplicate copy, or copyrighted materials that should not have been filmed. For
blurred pages, a good image of the page can be found in the adjacent frame. If
copyrighted materials were deleted, a target note will appear listing the pages in
the adjacent frame.

. When a map, drawing or chart, etc., is part of the material being photographed,

a definite method of *‘sectioning” the material has been followed. It is
customary to begin filming at the upper left hand corner of a large sheet and to
continue from left to right in equal sections with small overlaps. If necessary,
sectioning is continued again—beginning below the first row and continuing on
until complete.

. For illustrations that cannot be satisfactorily reproduced by xerographic

means, photographic prints can be purchased at additional cost and inserted
into your xerographic copy. These prints are available upon request from the
Dissertations Customer Services Department.

. Some pages in any document may have indistinct print. In all cases the best

available copy has been filmed.

Universrg'
Microfilms
International

300 N. Zeeb Road
Ann Arbor, M| 48106






8316145

Cole, Robert G.

THEORY AND APPLICATION OF COLLISION INTEGRALS FOR RIGID
OVALOIDS

Iowa State University Pu.D. 1983

University
Microfilms
International swx. zeeb Road, Ann Arbor, M148106






Theory and application of collision integrals for rigid ovaloids
by

Robert G. Cole

A Dissertation Submitted to the
Graduate Faculty in Partial Fulfiliment of the
Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Department: Chemistry
Major: Physical Chemistry

Approved:

Signature was redacted for privacy.

in Charge of Majotr Wofk

Signature was redacted for privacy.

FOF the Major Depaftpignt

Signature was redacted for privacy.

For the Gradugte College

lowa State University
Ames, towa

1983



.

VI,

VI.

TABLE OF CONTENTS

INTRODUCT1ON

THEORY OF THE BOLTZMANN AND ENSKOG EQUATIONS FOR
RIGID OVALOIDS

A. Derivations
B. Solutions

1. Chapman-Enskog
2. Grad's method of moments

SENFTLEBEN-BEENAKKER EFFECTS IN SYMMETRIC TOPS
A. Thermal Conductivity

B, Viscosity

C. Numerical Results

THERMAL-V1SCOUS EFFECT IN CHIRAL MOLECULES
A. Theory

B. Numerical Results

ORIENTATIONAL CORRELATION TIMES

A. Theory

B. Numerical Results

DEPOLARIZED LIGHT SCATTERING R PARAMETER
A. Theory

B. Numerical Results

CHATTERING

A. Formal Analysis

1. Dynamics of rigid ovaloid systems
2, Chattering expansion of the bracket integral

B. Numerical Work

Page

21
29

3
33
L6
53
72
73
86
105
105
119
123
126
143
151
153

153
169

183



VIl

X1.

Xil.

Xiit.

LITERATURE CITED

ACKNOWLEDGMENTS

APPENDIX A:

REDUCTION OF THE BRACKET AND LAMBMA
INTEGRALS

A. Bracket Integrals

B. Lambda Integrals

APPENDIX 8:

APPENDIX C:

APPENDIX C:

MOR! FORMAL ISM

THE TIME CORRELATION FUNCTION EXPRESSION FOR
THE R PARAMETER

TABULATION OF THE INTEGRALS REQUIRED FOR
THE CALCULATION OF THE R PARAMETER

Page
195
201

202
202
206

212

219

229



I. {INTRODUCTION

In 1872, Ludwig Boltzmann (1) proposed an equation governing the
evolution of the singlet distribution function (i.e., a probability
density for locating a particle of the system in a particular phase at
a given time) for a dilute gas. This equation, which now bears his name,
is a nonlinear integrodifferential equation. A solution to the
Boltzmann equation, one which would reproduce or possibly even extend
the understanding of macroscopic physics of the day, proved extremely
difficult to secure.

A satisfactory method of obtaining a solution to this equation for
general systems was not found until some forty years later. At that
time, Chapman (2) and Enskog (3) independently developed a method which
yields successive approximations to the solution of thg Boltzmann equa-
tion (BE). This method allowed for successive approximations to the
hydrodynamic equations to be written. That is, the Chapman-Enskog
method successively generates the nondissipative Euler, 1inear phenomeno-
logical Navier-Stokes, Burnett, and higher order hydrodynamic equations.
Consequently, the Chapman-Enskog (C-E) solution has successfully allowed
for the calculation of the transport properties of dilute gases (4,5).

In 1921, Enskog empirically modified the BE appropriate to rigid
spheres in order to account for high density effects (6). The Enskog
equation (EE), because it is very similar in structure to the Boltzmann
equation, can be handled using the C-E method. Experimental and theo-
retical comparisons have shown that the EE successfully incorporates

(to first order) high density effects (4,5).



The great successes in calculating the transport properties of
atomic systems provided the motivation to generalize these methods to
the study of polyatomic fluids. Curtiss and his collaborators (7,8)
extended the classical Boltzmann equation, allowing for the examination
of phenomena peculiar to nonspherical molecules. This polyatomic BE,
and its high density counterpart, the polyatomic EE, have been applied
to the simplest of polyatomic systems (i.e., the loaded sphere and the
rough sphere) by Dahler and associates (9,10). In 1969, Hoffman (11)
demonstrated that it is a fairly simple matter to obtain numerical
results from the BE for systems interacting through any general rigid
convex potential. Since that time, Hoffman and co-workers have utilized
the above mentioned techniques to study gas phase transport properties
for various model systems. These systems include simple systems com=~
posed of linear (12) and spherical top molecules (13), and diatom-diatom
(14) and spherical top-spherical top (15) mixtures. Also, viscosities
and thermal conductivities of dense fluids composed of rigid ellipsoids
and rigid ellipsoids surrounded by a square well have been calculated by
Dahler and Theodosopulu (16).

These techniques have proven extremely useful in that they allow
for a relatively simple and inexpensive calculation of transport prop-
erties for rather complex systems. In brief, these methods assume that
the dynamics of the system are adequately determined by the impulsive
part of the molecular potential. The impulsive core is assumed to have
a rigid convex geometry. Furthermore, it is aséumed that the phases of

any two particles in the fluid are dynamically uncorrelated prior to



their collision. Thus, complicated n-body collision events are neglected
and the time evolution of the many body system is determined by means of
the collision dynamics of two isolated molecules. Finally, the two

body dynamics are assumed to be chatterless. A chattering collision is

a recollision event between two rigid, nonspherical bodies without the
intervention of a third body.

It is the objective of this work to examine further applications of
these methods. Specifically, gas phase studies of (1) Senftleben-
Beenakker effects in simple systems composed of symmetric top molecules
(Chapter I11) and (2) chiral molecules in the presence of an external
magnetic field (Chapter IV) are carried out. Due to the complicated
structure of these molecules, the models and methods discussed in the
previous paragraphs represent the only existing methods which are
feasible for calculating the transport properties of these systems.
Later chapters are devoted to liquid phase studies of (1) orientational
relaxation phenomena in atom-diatom fluids (Chapter V) and (2) shear-
orientational couplings in simple diatomic fluids, as measured by the
Rytov parameter obtained from Depolarized Light Scattering (DPLS)
(Chapter Vl); Finally, a discussion of chattering events is given
(Chapter VIl), along with possible methods for the incorporation of
these events into kinetic theory calculations.

We begin our study by discussing, in Chapter 1|, the derivation of
and methods of solution to the Boltzmann and the Enskog equations. This

treatment will serve as a guide to the following chapters.



if. THEORY OF THE BOLTZMANN AND ENSKOG EQUATIONS FOR RIGID OVALOIDS

A. Derivations
We will (unless explicitly stated otherwise) consider only a
single component.fluid of N molecules having rotational structure. The
generalization of our discussion to mixtures is obvious. The N molecule
Hamiltonian is
o (3<_N) = g
=

1 (K, (py,L;) + ¢ (r;,00)) +HX£J. Vilmesne) (2.1)

where Ki is the kinetfc energy of molecule i, ¢i is the potential energy
of particle i due to the presence of an external field, and Vij is the
intermolecular potential acting between i and j. Throughout this work,
r; represents the Cartesian coordinates of the'center of mass of molecule
i, &; represents its set of Eulerian angles, and P; and Li its linear

and angular momentum, respectively. Furthermore, we define i as the set

(94’-Ri’ L.), X; as the phase of molecule i (i.e., Fis % Pio LJ), and

5? as the set (54, Koy sees 55).

We begin the derivation of the kinetic equation with the basic

equation of statistical mechanics, the Liouville equation
Sa-t-F(N) ()_(_N,t) = -iL(N)F(N) (iN,t) . (2.2)

Here,F(N)(zﬂ,t) is the full N particle distribution function normalized

L)

to unity, is the N particle Liouville operator defined by

AL U I S (2.3)



with {A,B} denoting the Poisson Bracket. For a system interacting
through a pairwise additive potential, the macroscopic quantities which
characterize the fluid can be expressed as averages in terms of the
singlet and pair distribution functions. Reduced distribution functions,

f(S)(iéat), are defined in terms of F(N)(Zy,t) by

N
f306e,0 = vt [ o ax PV e (2.4)
i=1

where f(s)(éf,t)défdt is the probability of finding any s particles of
the original N, in phase 5?, regardless of the positions and momenta
of the remaining N-s particles. By integration of Liouville's equation

over X

Xotq through Xye the reduced distribution functions can be shown

to obey the equations

TR P FIC N IR ) (S o)y (2.5)

at

I t~10

ik [ dxg V) gars

(5) f(S+1).

which express the evolution of f in terms of This set of
coupled equations is known as the BBGKY hierarchy (17-20). The first

equation of this hierarchy is

{%+iL(l)}f(])(_>_(_,t) - le(f(z)) (2.6)
where
(2)y _ (2)
JiJ.(f ) = fd_x_j{vij,f b, (2.7)

Defining the Liouville operator for free streaming as



Figure 2.1. Collision geometry for rigid ovaloids in nonoverlapping and
overlapping configurations



Lés) - i{HéS), (2.8)

allows le(f(z)) to be expressed as

3, == fan L@ - (2@ ) (2.9)
or
., (2)
., (2) -il
J12(f(2)) = lim 5-1 J dfz(e_'L €. e o e)f(z)(é_l_)g_zt) . (2.10)

Y
€ 0+

In Eq. (2.8), Hés), the interactionless s particle Hamiltonian, is

defined by
nis) o i {K.(x,) + ¢.(x,)} (2.11)
0 Ly A P . '

The quantities exp * iL(Z)e and exp * iLéz)e are the two particle inter-
acting and noninteracting streaming operators. The -(+) sign refers to
backward (forward) streaming.

For a system composed of rigid convex ovaloids, the intermolecular

potential is given by

V.. {r.a,jr.a,) = ) 2.12
1oy 0 if &,,>0 (2.12)

where gij is the minimum distance between the surfaces of bodies i and

j. For overlapping configurations, zij is defined as the maximum dis-

tance between the overlapping portions of the surfaces of bodies i and

j (refer to Figure 2.1). Due to the geometry of this potential, it is



convenient to carry out the volume integration in Eq. (2.10) as an
integral over 212 and k1' From Figure 2.1, qu (= :i-£4), is seen to
equal

12 = B2 % 212':1 (2.13)
where gﬁj = gﬁ-gﬁ and~_§_i is defined as the vector extending from the
center of mass of body i to the point on the surface which is closest
to (for nonoverlapping configurations) or farthest from (for overlapping
configurations) the surface of the jth body. The Jacobian of the
transformation from r,, to (212,£1), required for the variable trans-

formation,

dr,, = di,,dk S | (2.14)

12

can be shown from Eq. (2.13) to equal (21)

S = |algy, + 25k )/ 0k lﬁ , (2.15)
1
which is the determinate of 3(542-+212k1)/a(k1) in the subspace

orthogonal to k1. Using the above transformation, J12(f(2)) becomes

. (2)
] . @ il
3, ) = im &7 J d2dkSde, (e 1 F e O £ (2.16)
e~>0
+

Because the interaction in a single impulsive hit is instantaneous,
the integrand is zero except in the region -Iilzle <8y, % Iilzle, for a
vanishingly short time €, where 2 is the time rate of change of &. On

the precollisional surface of the excluded volume (the excluded volume



being defined as the volume excluded to the center of mass of body two

in configuration % due to the presence of body one in configuration &

at position 54) the only contribution to the integral is from the

region -|ﬁ|e €% =20. Here, the action of the streaming operators on
£(2)

is
., (2)
_.,(2) -lL( €
(e il € _ e 0 )f(z) (él’_&z’t) = _f(z) (ﬁ]’iz’t) (2.17)
where we have used the result that exp - iL(z)ef(z)(54,§2,t) vanishes in

this region. This is due to the fact that for two colliding molecules
to have penetrated essentially requires (1) an infinite relative momen-
tum because of energy conservation and (2) that f(z)(éq,ﬁa,t) approaches
zero as the momentum of particles one and/or two approach infinity.
Similarly, on the postcollisional surface, the contribution is from the

region 0 <2 < |2|e. Here,

., (2)
. (2) -iL
e-lL € .. "o e)f(Z)(ﬁpﬁz’t) = f(Z)(i{’ié’t) (2.18)

(2)

where it is assumed that f vanishes identically for overlapping con-
figurations. The primes in Eq. (2.18) denote the prehit momentum
(i.e., the momentum just prior to the impulse). Utilizing these

results, along with the Mean Value Theorem of Calculus, we find that

J12(f(2)) becomes

Jm(f(Z)) = Jdgdﬁsifm"(il,l; F*Eg5,2,t) (2.19)

where
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f(z)(ﬁq,éz,t) if 2<0

FD ) =y, (2.20)
177 (x] x5,t) if £>0
Furthermore, we obtain
3 L (1)..(1) ) o ()
Gp+ 1L M x,t) = | d2dkSkeg f (rys15 ry+€y5:2,t) (2.21)

by writing 2 as k.g, where g is the relative velocity of the contact

points, i.e.,

g = _\_/_2-_\/_1+£2x§_2-9_]x§_1 . (2.22)

Here,v. and w, are the linear and angular velocity of molecule i,
respectively. This equation was first derived by Curtiss and Dahler
(8) using identical techniques. 1t should be noted that Eq. (2.21) is
an exact consequence of the Liouville equation for rigid convex ovaloids.
An alternate derivation of Eq. (2.21) as found in Chapter VII,

In order to obtain a closed equation for f(l), various approxima-
tions must be made on Eq. (2.21). One approximation we choose to make
at this point is to ignore the existence of chattering collisions, i.e.,
multiple hit events between isolated pairs of molecules. The existence
of such events is obviously related to the nonspherical nature of the
interaction potential, which permits the collision, of encounter, to con-
sist of one or more hits. (See Chapter VII| for a discussion of chat-
teri?g events.) The neglect of chattering allows the interpretation of
f(z)" as a function of the precollisional state of molecules one and
two (as opposed to a prehit state, see Chapter VI1). ?ne further

(2)"

assumption must be made. [t will be assumed that f factorizes as
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(@ ON

) (1)7':
]’ ’ I‘ +E12: ) - X(L]&] ,_"_1‘*'512,9‘_2” (L]lt)f _r_.]+§..‘|2’_2_t)

(2.23)

where ) represents a nonequilibrium radial distribution function which
is independent of the momentum of particles one and two. Equation
(2.23) implies that prior to a collision the states of the two particles
are dynamically uncorrelated, which is a generalization of Boltzmann's
assumption of molecular chaos.

The traditional factorization of f(z)" (6), leading to the Enskog
equation, treats x as having the form of the equilibrium radial dis-
tribution function dependent on the nonequilibrium density at a particu-

lar space point, i.e.,

= x(E)(r

X(L40y5rp0, »t) F12q0o0, (R, 1))

= -W(L1ﬁ1 ,129_2){1 + n(R,t) J dr:,’doc3 Z(L19_‘_1 ’£222,£3ﬁ3)

1 2
tor (R,t) J dlgdggdﬁng# z(ﬂqﬁq’fggglfagafhgq)

+ ...} . (2.28)

Here,R is some ''reasonable' point between the mass centers of the two
particles. For hard spheres of equal size, R is obviously the point of
contact, but for general hard ovaloid systems identification of R is

not obvious. Also, W(r,a ) and Z(r. 1% 2% 2|r3 ) are defined in

20 5%
terms of the Mayer functions, fij (fij = exp -BVij - 1), as

W(£424,£jgj) = 1+ fij (2.25)

and



12

2(5494,£jgj|£kgk) = fikfjk . (2.26)

For a listing of the higher order Z(Ligi’fjgjlfkgk “as Eﬂgﬂ), the reader
is referred to the literature (22,23). However, this choice for x is
inconsistent with the force-flux relations of nonequilibrium
thermodynamics (24).

To remedy this inconsistency, Van Beijeren and Ernst (25) have
chosen x to be the equilibrium radial distribution function for a fluid

with a nonuniform density. Thus, they expand X(Eigi’fjgj) as (26)

X(ME)(£4§4’£QEQ’t) = w(£424’£292){] + J dfadgan(ﬁa’t) z(ﬂng’ﬂgﬁglfgﬂg

1

+ ET'J dgadgsdzhdghn(zat)n(ght)

X Z(L]QL_] ’Lzﬁzlﬂsﬁa;_[qﬁq) + ...} . _ (2.27)

Using Eq. (2.27) for x, we obtain what is referred to as the Modified
Enskog equation which is consistent with nonequilibrium thermodynamics
(27). An expansion of the densities in a Taylor series about some point
R and insertion of the result into x(ME) produces an expansion of x(ME)

in terms of gradients of the density,

X(ME) (ry@qsrp0y,t) = X(E)(£1£'£1 ’Lzﬁzl"(f‘-’t)) * J drydag
X H(_"_19£1 »5222:L3£3|n(5_,t))(g3 "B_) . 'é% n(,_fi,t)
+0(v%) (2.28)

where
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H(L]g’.] ’_'-_2.0_‘2’_[‘_39‘.3‘n(3,t)) = Z(L111 ,[_29_2».‘:_39_3) + n(&,t) J d:.l;dgl;
x Z(ryoyrpy lrgag, ) + oo L (2.29)

This expansion suggests that the 'best'' R to choose is the one which

satisfies the equation
.& = J d_':_3d9’_3 H(L]E‘_1 95_22_2’5_323 I'I(E,t))_l_‘_3 s (2.30)

(van Beijeren and Ernst show this choice of R to be 54-+%-£42 for the

(ME) (M)

case of identical spheres (25)) since, for this choice, x and x
agree through first order in the gradients.
Neglecting the existence of chattering events and factoring f(z)

as described above, we have that

2

{St

+ iL(”}f(‘)(f_] ,1,t) = J d_Z_dl:Sl:-g X(E) (ngl ,L1+§_]29L_2ln(5,t))

x f(”"(.[]’]_’t)f(U"(L]"‘é]Z’Z-’t) (2.31)

which is the Enskog equation appropriate to rigid ovaloids. Assuming

(E)

the spatial gradients in the fluid to be small, we can expand ¥ and
£(1) (r,+g,,) about r, to obtain
E
X(E)(£494’£4+§4222|n(33t)) = X( )(EJ»EQ,kln([J,t))
3 _(E)
+ QR EX (E_],g29k|n(£1,t)) + ...
(2.32)

and
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(" _ BN

f (_I'_1+_€_.|2,£,t) = (l'1,2 t) + g]z B_r_] (l"1, st) + ..
(2.33)

where g =R + r,. Inserting these expansions into Eq. (2.31) gives,

to first order in the gradients,

=

x

(1) (r 1 t)f(])‘(r 2,t) + J dgpﬂSﬁ-g f(])(gq,l;t)

(s 5 (1) *

x

f(,n(ipf,t)gR.%x(9_1,32,;21n(11,t))} . (2.34)

+

This is the form of the Enskog equation which is used in the applica-
tions discussed in Chapter V.,

The Boltzmann equation, which is applicable to the special case
of a dilute gas, can be obtained as a limiting form of the Enskog equa-
tion. In the limit of infinite dilution, two simplifications to
Eq. (2.34) are immediate. Firstly, in a dilute gas, all many body
effects vanish; therefore, we can set x = 1. Secondly, inhomogeneities
in the gas are negligible over distances on the order of a few molecular
diameters and, therefore, the gradient terms appearing in Eq. (2.34)

drop out. Thus, the dilute gas equation is

2

(1) ¥
n 1 ) F (52 ,t)

+ iL(l)}f(”(L],l,t) = J dadiksk-g £ (r [N}

(2.35)
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However, this equation is not yet in the form of the well-known
Boltzmann equation, because the second assumption made in this para-
graph places rather severe restrictions on the solutions of Eq. (2.35),
which are consistent with a simpler equation. We wish to make these
restrictions explicit. By ignoring all spatial variations on the order
of o (r0 ~ molecular diameter), we are simultaneously neglecting all
phenomena which vary rapidly wrt time scales 0(r0/<v12>) vt where
<v1é> is the average relative velocity. Thus, this assumption allows
us to replace Eq. (2.35) with a simpler equation, obtained by averaging
(2.35) over a time O(tc). This is equivalent to integrating out all

of the rapidly varying quantities., This yields

oo

x £ 7,0 (2.36)

where f(1)(r 1 ,t) has been replaced with A f(l)(r 1,t), with

= fdﬂi' Here,g_i represents the set of rapidly varying molecular
quantities, and i represents the remaining molecular variables hereafter
referred to as the free flight invariants. The function f(])(gq,j;t),
referred to as the Boltzmann distribution function, is the time average
of f(I)(éq,t) over a period T, such that t a t.- (For convenience, the

symbol f(l)

will be used for both the time averaged and nonaveraged
singlet distribution functions. The function meant will be clear by its
context. Where the two must be distinguished, the function arguments

(IJ’I;t) or (éi,t) will be given.) For a system of rigid polyatomic

molecules, the set, 0y generally contains the angular coordinates and
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the set, E; generally denotes the linear and angular momenta. However,
the situation is complicated somewhat in the case of symmetric top -
molecules where there exists an additional free flight invariant,
namely the projection of the angular momentum onto the symmetry axisiof
the molecule. This situation is discussed more fully in Chapter il.
Equation (2.36) is the well-known Boltzmann equation. It is explicit
in Eq. (2.36) that the solution of the Boltzmann equation is a function
of the free flight invariants alone.

This concludes the derivations of the Enskog (Eq. (2.31)) and the
Boltzmann (Eq. 2.36)) equations. For a more complete discussion of
these equations for simple fluids, the reader is referred to the
literature (4,5,28,29). For a thorough discussion of the derivation and
formal properties of the Boltzmann equation appropriate to a system of
rigid ovaloids, the reader is referred to the article by Hoffman and

Dahler (30).

B. Solutions

In this section, we will discuss the methods by which approximate
solutions to the kinetic equations are obtained. The first method we
discuss, that of Chapman (2) and Enskog (3), relies on the distinction
of two time scales on which the fluid relaxes to équilibrium (4).
These two time scales, denoted by ty, and t,, are related to the mean
free time between collisions and the typical time required for a par-
ticle to transverse distances comparable to the dimension of the fluid,
respectively. The Chapman-Enskog (C-E) method is esseﬁtia]ly a perturba-

tion expansion in tk/th. For this reason, it is applicable only when
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the fluid density is high enough so that tk/th << 1. Under this condi-
tion, the fluid is assumed to approach equilibrium in two states. For
a time of O(tk), the fluid is in the process of equilibriating locally.
During this process, occurring during the so-called kinetic stage, the
time evolution of the fluid is governed by the full singlet distribution
function as determined from the initial condition at the beginning of
the stage. For times long compared to tys the molecules have undergone
several collisions establishing a local equilibrium which is character-
ized by the hydrodynamical fields, i.e., n(r,t), u(r,t), and T(r,t),
the number density, streaming velocity, and temperature, respectively.
For times O(th), the local fields characterizing the fluid relax
according to the equations of hydrodynamics; the distribution function is
determined by the hydrodynamic fields in this relaxation process. Thus,
"memory' of the initial conditions, except for the hydrodynamics fields,
whiﬁh correspond to the first three moments of the distribution,iare
lost in this stage.

An alternate solution to the kinetic eq;ations was developed by
Grad (31). Grad's method of moments depends on the existence of a con-
traction in the number of moments of the distribution necessary to
adequately describe the system as the fluid equilibriates. The method
involves expansion of the solution to the Enskog or Boltzmann equation
in terms of the contracted set of functions corresponding to these
moments. Since such a contraction occurs for a wide variety of phenomena,
this method is broadly applicable, whereas the C-E method is appropriate

to fluids with small gradients and densities which are not too low. In
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philosophy, there is, however, a close correspondence between the
methods.

For the sake of generality, we will work with the Enskog equation
2 My o G e(h)y (2.37)

where J(f(1)|f(]) is the collision operator and iL(1) is explicitly

(1) _ d N 3 3
iL = l/_.l '-a'-;__—]—"i' _(1_).1 IJ] + E_1 3_1 + ﬁl . E . (2.38)
Here,
. » 2
iJ, = e, x — (2.39)
1 ]
oe

1

is the rotation operator, fq represents the force, and EJ the torque
experienced by molecule one due to the presence of an external field.

We will only consider the existence of an external field when discussing
dilute‘gases and then confine our attention to an external magnetic

field. For this reason, we will discuss an equation of the form

G+ Yy 32_]+21 R A FRICAUTAL (2.40)
where
F(f(]j) = N ._.a__f(l) (2.41)

-1 BL]

is the time average of the field operator over a period equal to t.-

Here, the quantity E} the time average torque, is given by
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E = uxH (2.42)

where H is the applied magnetic field and p is the molecular magnetic
dipole averaged over the rapidly varying molecular quantities (refer to
the reduction of the Enskog equation to the Boltzmann equation above).
Not all of the terms in Eq. (2.40) act on the same time scale. In
order to scale the individual terms in the Enskog equation, we will

transform to dimensionless variables. First, we define

]h = a characteristic macroscopic length (i.e., dimension of
vessel)
o = typical range of molecular interaction
<vrel> = average relative velocity v (kT/urel)]/z
<v> = average molecular velocity ™~ (_kT/m)]/2
<w> = average rotational velocity ~ (,kT/I)]/2 (2.43)
re] = mean time between collisions v (nr§<vre]>)-]
t = mean travel time for distances O(Ih), N lh/<N>
t, = mean reorientation time ~ <m>“]
t = inverse Lamar frequency = (HBnucl/ﬁ) where 8 | =

nuclear magneton

along with the dimensionless quantities (denoted with a tilde)

t = tht

r o= lr
p/m = <wv

w = <w>w

- (2.4%)

|r—
[}
=
i
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~

1= Bnucl E
g = <Vrel>g
S = 1S

f“)(ﬁ])di] = n(m<v>R) 3 f(‘”(g(_])di]
In terms of these dimensionless quantities, the Enskog equation bécomes

R R IR TR YRR TAL) (2.45)
ot ar Y7

where R(¥(1)|F(1B (A(f(]) f(])) used below is similarly defined) is

;\(.;(1)‘;(,1) - 'eLﬁxﬁ L2 () +3(;(1)|1~,(1)) ’ (2.46)
aL.

J(F(])|;(1)) is simply the collision operator defined entirely in terms

of dimensionless quantities, and the marking parameters are

€ trel/th
g = trel/tL (2.47)
€, = th/tw

Equation (2.45) gives us an indication of the relative importance
of the processes in competition in the fiuid. The parameter, €’
measures the Importance of molecular reorientation in the fluid. For
high densities and highly anisotropic geometries, €, v 1. In Chapters
V and VI, we will examine orientational correlation times and light
scattering phenomena in this regime. For low densities, €y 0; this is
the reason the Boltzmann equation is averaged over the rapidly varying

quantities. The parameter €L is a measure of the competition between
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the effects of the magnetic field versus the collisional effects. This
competition gives rise to the Senftleben-Beenakker effects to be dis-
cussed in Chapter 11, Finally, the parameter € gauges the relative
importance of the free streaming versus the collisional relaxation in
the fluid. This competition is central to the C-E method of solving

Eq. (2.40).

1. Chapman=-Enskog

The starting point for the implementation of the Chapman-Enskog

method is to rewrite Eq. (2.40) (motivated by Eq. (2.45)) as

3 d S =1 (1) (1)
e *y - o +w, o 1M = ¢ A(FVUFY) (2.48)

where ¢ is to be treated as a dimensionless marking parameter. From
Eq. (2.47), € can be interpreted as the ratio of the mean free path to
some typical macroscopic 1ength in the system. Next, we assume that

f(1)(§4,t) can be expanded in a power series in €, as
fm(gg],t) = f(()‘)(_X_],t){l + ed(x,,t) + 8(c2)} . (2.49)

The C-E solution follows by substituting this expansion into Eq. (2.48)
and equating the coefficients of like powers in €. Because ¢ is pro-
portional to gradients of the local fields, we are required to associate
an € with each order of the gradients in J(f(])lf(l)) (refer to Eq.

(2.34) above). To lowest order, this procedure generates the equation

o) Jd_z_dllsﬂ-g M@ =0, (2.50)
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the solution of which is the Maxwell-Boltzmann (local) equilibrium dis-

tribution function given by

2
(1) (BI-mH(LVt)) + Elnt ).
2mkT(r, , ) kT(r,,t)

fo @ (xpt) = An(_r_l,t)T-a/z(L

1,t) x exp = {

(2.51)

Here,o is the number of active degrees of freedom of the molecule and A
is chosen such that fé])(éq,t) is normalized to the local number density.
Also,n, u, and T are chosen to be the local values of the number density,
streaming velocity, and temperature, respectively. This choice forces
the distortion, e¢ + 9(52), to be orthogonal to 1, v, and (p-mg)Z/Zm

+ Eint' {t is convenient to impose this condition to every order in €
so that ¢ itself is orthogonal to these quantities. In Eq. (2.51),

Eint represents the internal energy of the molecule. To second lowest

order, we have
o(e): o el (x 00 = -£{F) - £V e) = Ay (2.52)

where the inhomogeneous term is (32)

3

PO N ¢ VR (P 9

(2.53)

and the collision term is given by

-

K¢ = J d2dkSk ‘g xf(l)(r],z t)[¢(r], ,t) + ¢( %,t)] . (2.54)
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It is not the full time derivative of f which appears in Eq. (2.53)

(1)
0

We have indicated this by placing a subscript zero on the time derivat

symbol (i.e., 80/8t). The interpretation of this operation is derived

ive

from the solubility conditions on Eq. (2.52) which are discussed below.

We are not interested in the expressions obtained from equating higher
order terms in €.

As was already mentioned, the solution to Eq. (2.50) is known and

(1)

is given by Eq. (2.51). Implicit in the expansion of f about this

lowest order solution is the idea that we are seeking a solution to
Eq. (2.40) in the hydrodynamic regime, where the fluid is close to a

f(.1)

state of local equilibrium. In this regime, is a functional of

the local hydrodynamic fields (33). A solution of this form is termed

a "Normal Solution''. Such is the case of fé]),
o
(E)o(1) _ (1) 0 3 2 2 o
D fo = fo {(-a—t-lnn+!] -5E]-lnn)+[w1+91 2]
2 ?
v 0 ] 2m 0 ]
X(S'E-]nT+!_]-El—lnT)+ -ﬁ\_d_1o(5-£-t_,|_+y_l ——Bf_]
(2.
where Ei and 24’ the reduced linear and angular momentum, are defined
!i = (24 - mu)/Y2mkT (2.
and
= }_i//ZIkT . (2.

by

56a)

56b)
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Now recall that for a solution to a linear equation such as Eq.

(1)

(2.52) to exist (34), the inhomogeneous term, D(E)f

0 must be
orthogonal (35) to the solutions of the adjoint of the corresponding
+
homogeneous equation, A(E) p=0. These solutions are well-known (4)
and are
‘b] = my (2.57a)
and
= 1.2
w3 = Fmvy+E . (2.57¢)

Explicitly these solubility conditions are

Jd_]_upi(_>51)D(E)fé'l)(§],t) =0 ('2.58)
which can be written as
0 = & tfam {01+ g 0] dvy 8"

-1

- | andadisiog v, (P70 - 4 PN X g ugyy < 5 WAV @)

where the superscripts indicate functions of the pre- or post-collisional
momentum.
The three solubility equations obtained from Eq. (2.59) by letting

i =1, 2, and 3 determine the reduced time derivatives (i.e., ao/at) of
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the local fields in D(E)fé1)(53t). The three conditions are:

(1) for wi =m, ,

;%-ln n+u --gt Inn = --5: *u
(2) for wi = my, ’
Suvuedu--tiop
(3) for v, = %-mvﬁ + Ee R
E%ln T+u- é%:ln T = - 2%—-5: *u

(2.60)

(2.61)

(2.62)

Equation (2.60) is just the hydrodynamic Equation of Continuity.

Equation (2.61) is Euler's Equation of Motion where p

hydrostatic pressure tensor. Explicitly

where 2(3) is the unit tensor (isotropic) and
(K _ 1 2 (1)
Po’ = 3| dim C7 fg
vy _ _ 1 % (1) (1)}
Po.! = -7z | d1d2dkSkeg kxfy''fy 'k « &,

= nm and P0 is the

(2.63)

(2.64)

(2.65)

Finally, Eq. (2.62) is Euler's Energy Balance Equation written in terms

of the temperature, where Cv (= a/2 kT) is the heat capacity at constant

volume. In deriving Eqs. (2.61) and (2.62), use of the previous

solubility conditions was made.
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Using the solubility conditions to eliminate the time derivatives

in D(E)fél)(gq,t), we obtain, after much algebra, the final form

p
(E) . (1) _ (1) 0 /2m , 2 2 _ o _ ~ )
Dy (x,t) = {[—5- ﬁ(w1+91 3 1)y_1+y_T(1)] -a-L—lnT
P P P
0 S0 g2y o0 ,03)
+ 1w WY, C,T Wy+ay-3) - 57!
. .y
+ 8,01 grul (2.66)

for the inhomogeneity, where the functions ﬂq(l) and ﬁu(l) are

~ _ 1 ~ ". (1) % - %

ﬂT = ‘i—lsz d_z_dkSk g Xfo (_2_)[E.| E2]§_12 (2.67a)
and

Bo= =t | d2dkskeq x£$P (2)kKe (2.67b)

By T 2kt | CATRRNI xTg 12 '

In Eq. (2.67a), E represents the energy of molecule i as measured with
respect to a coordinate system moving with the streaming velocity,
u(r,t). This expression for D(E)fé1) is identical in form to that

first obtained by McCoy et al. (10) for a dense fluid of perfectly rough

spheres. As a check on Eq. (2.66), we now take the dilute gas limit,

n—+ 0, in which case Pév), GT, and ﬁu all vanish. This gives

(B) (1) _ (1) ,2 2 _o _ .0
D fo = fo {(W1 + 91 7 1)9_1 _3: InT+ [2E1E1
_ 2 42 2,,(3),., 3 '
2od ey Lu (2.68)

which is the correct dilute gas limit (30).



27

Using Eq. (2.66) for the inhomogeneity, we find that the equation

for the distortion from the C-E method becomes

D(E)fél)(zq.t) = - A(9) (2.69)

where K(¢) fél)(ljt){%(¢) + RE(¢)}' Since A is a linear operator,

the form for the solution can be expanded as

0
_ 2kT , , 9 . 9 9 .
b = —A BLln T + B: + D or

" u+E
n = or —

3—3_-x u  (2.70)

where the functions A, B, D, and E must individually satisfy the equa-

tions

-0 (A) = F('){—Pl Wr e -%- D, + /A (1)) (2.71a)
Al = Vo 1Rkt W T T 2 LA ZKT =T ‘= ’ -/1a
. M. Po o .

-A(@) = fy {oor 20W, +H (D}, (2.71b)

P. 2 p p 1
- _ e, 02 "o 2 2 o __ 0 = 4 (3)
MPY = fo IRV te T Vit T Tma 3L 4
(2.71c)
and
-A(E) = fél){gu(j) X 2(3)} (2.71d)

(Note that ¢, as given by Eq. (2.70), does not contain a constant term
¢O which satisfies A(¢o) = 0. Such a term is ruled out by our require-
ment that ¢ does not contribute to the hydrodynamic fields.) In the

dilute gas limit, these equations reduce to



28

2y = £ 4?2 - %l

AMA) = Ffo W+ Q) - 5 - W , (2.72a)
@) = V@l (2.72b)

W 2 p (K) )
~ _ 2.2 0 2 _a._
-A(D) = f, t3w e, Wy + 0] -51-1} (2.72¢)
and
-K(,g_) = 0 . : (2.72d)

(1)

Therefore, the C-E method has reduced the evaluation of f , satisfying
the nonlinear Enskog equation, Eq. (2.40), to the evaluation of the
distortion, ¢, satisfying a set of inhomogeneous linear integral equa-
tions of Eq. (2.71). The methods for solving such equations, when
mathematically well-behaved, are well-known, Briefly, the unknowns are
expanded in a complete set of polynomials (36) which is then truncated,
transforming Eqs. (2.71a)-(2.71d) into a set of matrix equations (37-39).
Solving these matrix equations, we obtain expressions for the distor-
tions and, hence, the transport coefficients in terms of quantities

known as bracket integrals. Because we will deal only with rigid inter-

actions ignoring chattering, these bracket integrals take the form

. 1/2
N N U (1), ¢ _ o 2kT (n)
L5200y = Fu_n“j‘“— fo ket = (570 B
TRV
2
x j dkd_oiidg_js__s_gigq)jOn(u,v)D (2.73)

where £ and ¥ represent polynomials in which we have expanded the solu-

tions to Eqs. (2.71a)-(2.71d) or Eqs. (2.72a)-(2.72d), the indices u
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and v are species labels, and the indices | and j label the colliding
molecules. Here u is the reduced mass, n is the number of active

(n)

degrees of freedom of the colliding pair, B is a constant which
depends on (n), and D is a normalization constant. The projection
operators, égi and ggj, along with the term (u,v) which results from
the momentum integrations in the collision operator, are defined in
Ref. 11. The form of the bracket integrals is derived in Appendix A.
These bracket integrals will appear throughout this work, since we will

be able to express all of the transport coefficients or correlation

fucntions which we require in terms of them.

2. Grad's method of moments

Grad's method of moments relies on the idea that as the fluid
approaches equilibrium, the variables necessary to describe the fluid
contract. The initial state of the fluid is adequately given only by
the full set of (2f)N coordinates and momenta where f is the number of
molecular degrees of freedom. Whereas at equilibrium, a thermodynamic
description is adequate. In the hydrodynamic regime, Grad proposes

that the singlet distribution can be expanded about equilibrium as

FW e, = 105000+ 60x,,003 (2.74)

(1)

where fo can be understood to represent an absolute equilibrium and
¢(§4,t), the distortion, is normalized to the local fields. The local
fields may be the usual hydrodynamic fields, the number density,

streaming velocity, or temperature; or they may represent more exotic
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fields such as the orientation and angular momentum densities. The
choice obviously depends on the phenomenon being described.

Once the appropriate fields are determined, the distortion is
expanded in a finite basis set whose moments are the local fields.
Substitution of this expansion of f(l) into the kinetic equation,

Eq. (2.40), drbpping terms bilinear in the distortion (assuming, of
course, small distortions), using Eq. (2.50), and taking the appropriate
moments, results in a set of linear algebraic equations for the expan-
sion coefficients. The solution of these equations yields the expan-
sion coefficients in terms of the bracket integrals of Eq. (2.73)

above. Therefore, the transport coefficients and correlation times
calculated using Grad's method are also given in terms of the bracket

integrals.
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F11. SENFTLEBEN-BEENAKKER EFFECTS IN SYMMETRIC TOPS

Senftleben-Beenakker effects were first observed by Senftleben
(40) who subjected the paramagnetic gas, oxygen, to an external magnetic
field. Senftleben noticed that as the magnetic field strength increased,
the values of the transport coefficients decreased. Similar results
were observed in the paramagnetic gases, NO (1) and NO,, (42) as well.
It was Beenakker et al. (43) who first observed these effects in diamag-
netic gases.

This effect was explained by Gorter (44) using the following simple
picture of the gas. Due to the presence of macroscopic gradients,
molecular flows are established in the gas. For a dilute gas, these
flows determine the values of the transport coefficients (i.e., all
transport properties of dilute gases are of a mean free type). Colli-
sions in the system selectively eliminate from the flow particles with
large effective cross sections which, in turn, creates a polarization
in the angular momentum distribution in the gas. This polarization is
such that it minimizes the effective collisional cross sections of the
streaming molecules. The introduction of an external field destroys
this g-polarization through Lamar precession, thus increasing the
effective molecular cross sections. This, in turn, decreases the mean
free path and, hence, decreases the value of the transport coefficients.
Because the Senftleben-Beenakker effects depend solely on the aniso-
tropic part of the interactions, they have been the subject of intensive

investigation (45).
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As mentioned above, the magnitude of this effect is measured by the

dimensionless parameter € trel/tL which is proportional to H/n.

L
Here toe and tL represent the mean time between collisions for a fluid
particle and the Lamar precession time, respectively. Thus, at high
densities, for the effects to be measurable, the strength of the field
is prohibitively large. Therefore, the Senftleben-Beenakker effects

are detectable only at low densities for which the Boltzmann equation
can be applied.

Our reason for investigating Senftleben-Beenakker effects for
symmetric top molecules lies in the existence of an additional free
flight invariant; thaf being the projection of the angular momentum of
the molgcule onto its body fixed symmetry axis. The importance of the
free flight invariants was eluded to in the derivation of the Boltzmann
equation (Chapter 11). There it was argued that the dependence of the
singlet distribution function for a dilute gas on variables other than
the free flight invariants is weak. For this reason, in the Boltzmann
equation, the full singlet distribution function can be replaced by its
time average. This time averaging over a period, which fs long compared
to a rotational period but short compared to the mean free time, results
in an average distribution that is a function of the free flight
invariants alone.

We will first discuss the thermal conductivity and then the vis-
cosity. The discussion of the thermal conductivity will be fairly
detailed in order to familiarize the reader with techniques. Since the

methods used in calculating the viscosity are nearly identical to those
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for the thermal conductivity, the latter discussion will be much abbre-

viated. Finally, numerical results will be given.

A. Thermal Conductivity
The phenomenological equation describing the heat flow in a system

with a nonzero temperature gradient is
5 .
S- = --A- .—B-FT (3'1)

where g is the heat flux vector and A is the thermal conductivity tensor.
This relationship is known as Fourier's Law. The form of A depends on
the symmetry of the system. For an isotropic fluid, A reduces to a

(3)

scalar multiple of the unit tensor, U The introduction of an

external field aligned along the k axis (i.e., ﬂﬂk) destroys the spatial

isotropy. In this case, the form of A(H) becomes
- (2) (2)
AR) = apkk + MY A Y (3.2)

(2) _ ,(3) _p» y(2) _ (3)
kK y - kk, lk =Y

the parallel, perpendicular, and transverse components of A(H).

where g x k, and A", Alf and Atr represent

In order to obtain an expression relating A to the microscopic

properties of the fluid, we first write the heat flux vector as
- (1)
q = Idlf (2(_1:t) E1 _c_] (3.3)

where, in this section on symmetric tops, dl is understood to represent
ququd(c°59|)’ with H being the angle between the angular momentum and

the molecular symmetry axis. Since Fourier's Law is valid only in the
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(1) as fé1)(1 + ¢T), where

‘linear regime, we are justified in expanding f
¢T is chosen to be the solution of the first order C-E approximation to
Boltzmann's equation, Eq.'(2.72a). Using the expanded f(]) in Eq. (3.3)
and the form for o1 obtained from Eq. (2.70) by setting all but the

temperature gradients to zero, we obtain

/2

1
= nf EEI ) <E.CyHA> - él-ln T (3.4)

where

s = o7 fan Py (3.5)
Here, the dagger denotes the tensor adjoint. Finally, comparing Egs.
(3.1) and (3.4), we have that

A = ak( ED)<r( 3 - wd) + (@ - 0d) ¥ r(<ad> - ol )W A (3.6)

n 1

where the molecular energy has been expressed in the reduced variables

_ 2 2 2

E, = kT(Wj+Qj+ racl) (3.7)

with
-1/2 -

Q = 21, kT L, - .8

¢, = L e (3.8)
and

r = I-L/lll-l . . (3.9)

Here,e3 is the body fixed symmetry axis and |" and Il-denote the
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momeﬁts of inertia parallel and perpendicular to ;3. Also, we have
made use of the orthoggnality conditions on ¢T (refer to Chapter 11).
This is the desired microscopic expression for the thermal conductivity
tensor; it remains to solve Eq. (2.72a) for A.

In order to obtafn an approximate solution of Eq. (2.72a), A is
expanded in terms of a set of complete functions of the free flight
invariants, i.e., W, 2, and Qc. The literature Is vague concerning the
appropriate set of functions to use. We choose to expand A in the

rather unorthodox set

- s(r) (q) (p) 17 (a)
A = pqgst :1/2(»1 R @R (90) x 1P 1) VeP*p () (3.10)

due to the freedom it affords us. Namely, this expansion set allows us
to choose the QC dependence of the basis functions independent of the
g:dependence. This is not possible for other more traditional expansion
sets (cf. Eq. (3.14)). This is to our advantage, for the purpose of
this study is to investigate the QC dependence of the distribution func-
tion. Here,Sé:%/Z(wz) denotes the Sonine polynomials which satisfy the
orthogonality conditions

" ax2 () 2ye(n') 2y 2mH]
J S (x )Sm (x")x

dxe 8§ T(n+m+1)/2n! (3.11)
0 n

(q)

where T'(x) is the gamma function and R (Q ) represents the Wang Chang-
Uhlenbeck polynomials (46) of degree s in Q. The latter are defined

through the orthogonality conditions
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&l @ @1 12y 11 @5 = s (3.12)

(q)

where § is the unique (idempotent under the multiplication g(q)qu(q)

= g(q)) isotropic tensor of rank 2q which is traceless and symmetric on

(q)

S is a normaliza-

all pairs of first and last q indices. The quantity C
tion factor defined so that the highest order term of the polynomial in
the angular momentum, ta, has a coefficient of unity. The Rt(Qc)'s

are defined through the orthogonality relations

<R (2R (2)> Codper (3.13)

where Ct is similarly defined so as to give the leading term QE a coef-

(

ficient of unity. Here, [x] y) is an irreducible Cartesian tensor (47)
of weight and rank y constructed from the vector x, and o" denotes an
n-tuple contraction (with the nesting convention for contraction in-
voked). Finally, épqrst(H) is the field dependent expansion coeffi-
cient which forms a basis for the totally symmetric representation of
the group of rotations about the field. The difficulty with this set
of functions lies in the fact that it is not possible to obtain an

orthogonality condition between the factored functions Réq)(QZ)Rt(QC)

of the form

(q) ;o2 (q) (21, (@) rorla)s — (q) (q)
R (@R (2R (@R (2 121"V 121°V> = Vs 18,8 (3.14)

due to the requirement that Q% 5292. However, the general nonorthogonal-

ity of the expression set will not present any difficulty in this work.
This is due to the fact that the field terms discussed below are

orthogonal not only to one another, but also to the nonfield contributing
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terms. To obtain a general orthogonality condition, we would be forced
to consider a set functions of the form Rig)(nz,ﬂc), but this would not
allow consideration of expansion terms commonly found in the literature.
Finally, one might believe that an appropriate set of functions in
which to expand the QC dependence of A is the Legendre polynomials in
cosB. However, these functions are not orthogonal under the weight
exp(-cosze) which is required here. These are precisely the reasons we
have chosen to expand A as in Eq. (3.10).

The truncated expansion of A should contain the terms (5/2 - wz)y,
(<92> - QZ)E) and (<R§> - Qé)!_(refer to Eq. (3.6) for A(H)). 1In order
to observe the $-B effects, nonzero angular momentum polarizations are
required. Furthermore, the inversion symmetry of -the collision
operator (30) forces all of the terms to have a negative parity eigen-
value. Terms bofh even and odd in 2 should be included for it will be
observed that terms odd in @ cause positive changes in the transport
coefficients whereas terms even in Q cause negative changes. Most
importantly, since we initiated this investigation to study the effects
of Qc, terms containing Qc should also be included.

Past work has indicated wgog to be the dominate field term and,
thus, we include it in our expansion set. We complete the basis set

with the terms Q.2 and chwow which are odd in the angular momentum. A

C
field term, which isodd in the angular momentum and which has often been
considered in formal discussion of $-B thermal conductivity effects, is

the function WQ. However, the contribution of WQ vanishes in the limit

of a rigid potential to 2nd order in the nonsphericity; hence, we need



38

not include this basis function in the expansion. Equation (3.10) then

reduces to
A = « A + 9 « A + U ®2A
- 10100 =10100 ~ +10010 =10010 = =12000 =12000

+ Ty - A + - A + Y o%a (3.15)

~10002 =10002  =10110 =01001 £21001 =21001 .
which is abbreviated to
6 n. -
ﬁ = z 2. 0] ! é_ (3.16)

where in Table 3.1 is listed the basis functions along with their parity
and time reversal eigenvalues. We have not considered potential field

terms which contain an Qc dependence, but do not contain an 2 dependence,
for the following reason. For a gas composed of symmetric top molecules,

the field operator in Boltzmann's equation is of the form (cf. Eq.

(2.41))

~

Fp = (.1/131) Jdﬂl f(_()l)l‘.x!i'. 5L L (3.17)

where the integration is over the rapidly varying molecular quantities.
Consider the function y = LC (= L - e3). The action of the field

is

operator on Lc

~

FL

(1) 3, .2
(1/5,) J dn, f, uxHoegrl - es

c

(3.18)

a

J dn, fé‘)ﬂ XH - e

where we have used the fact that the magnetic dipole moment is parallel

to the angular momentum. For a symmetric top molecule e3 averages to
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L cosf, where 6 is the angle between the angular momentum and the

molecular symmetry axis. Therefore, FLC is proportional to

A

FLC o i xH . i cosd = 0 . (3.19)

From this resu]t; we conclude that basis functions which are anisotropic
solely by virtue of an Qc dependence do not contribute to the $S-B
effects.

The expansion of Eq. (3.16) is inserted into Eq. (3.6) for A(H) and
the Boltzmann equation, Eq. (2.72a), is then inverted, utilizing the
nonsphericity expansion of Cooper and Hoffman (38) or Matzen (39), to
obtain the values of the expansion coefficients. This procedure
generates a power series expansion of é(ﬂ) in orders of the nonsphericity.
The following results are obtained for the thermal conductivity to

second order:

A = A[O] + é[l] + éIZ] (3.20)
where
[0] k , kT /2 25 202 2202 2.2
A = — (=) { a +<aD% + r' o> + 1> >[f + h]
= 2/2 M
+ .g <a®>b + r<n§>c + <%d + I‘<Q(2:>g]} (3.21)
and

_ _ a2
a = M{BZZGHM 62h}

b= MO0~ Oy}
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c = M{B,98,), = 85504}

d = M{8,,0,) = 84,0}

2
e = M{61]6hh - 914} (3.22)
Fo= M8,,8,, = 0440}

g = M8y509, ~ 8448p))
h = M08, = 01405}

o= M{8,,8,, - 0,,0,,}

2
Moo= 10100,500,, = 0541 = 84200,50,, = 09841 + 04,1858, = 08558441}
(3.23)
with eij’ the reduced cross section, defined by
1/2 ~
(pya) _ -2 , u t
8158 =" () a1 g; Kg &
1/2
- _11_ 1,] 1,2
- ( kT ) {[gi ’ij]s’s + [gi ’ljls,s} . (3.2"‘)

Thus defined, eij has units of area. The bracket integrals in Eq.

(3.23) are discussed in Appendix A. The rank 2(p+q) tensor, 2(p+q)’
(p)

represents the tensor formed by embedding 8§ between the inner two

()

indices of ¢ Here p and q denote the rank of the irreducible ten-
sors made up from W and Q, respectively, as contained in the gi basis

functions. The first and second order terms are
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A1 <o (3.25)
and
[21 _ 121, .02, ,I2]
A A3 M ATt Ay (3.26)

where the subscripts denote the basis functions giving rise to the

effect, with

1/2
wg {5[613a + 0y3b + e3h°]

(2] kK, kT
A = — ( )
=3 27 ™

2 2 .
+ 2<Q >[e]3d + 623e + 9341’] + 2I'<s2c>[e]3g + ez3h + e3h|] l3

855H3Y; (3.27)

ot BaelaBpal 5 40 ) e s L reg?
vy = 913{Ea+2<sz>b+2r<n§>c}+ez3{1;d+2<sz>e+2r<szc>f

+ 0,0 29 +-‘2-<szz>h + 3 1<a>>i) (3.28)
v, = §Pedy e3s(?) (3.29)
=3 2 43" 2
1/2
(2] _ . k (kT 2
AS = - ( = ) m5{5[625b + ehSC]-+ 240 >[925e + elsSf]
2 .
+ Q[0 ch + 8,11 Yo
- BgehcYs (3.30)
- 5 0.1 o2 o102 5 12 .1 :
wg = 925[ i d + 7 Qe + 7 r<9c>f] + 945[ T9t3 <Q">h + 5 F<Q§>|]

(3.31)
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(1), (1)

=<
|
lios
<
o>

(3.32)
and

1/2
éézl = -k ( EI-) wg {5[9618 + 662b + 964c]

2/2 ™

2 .
+ 2<92>[661d‘+ 8gq¢ + 8¢, f1 + 2r<a>[0,,0 + 8¢ h + 0., T11Y,

- Bg6Hets (3.33)

6 = %'[6613 + e6zd + 9649] + %-<nz>[e61b + 0g,e + °6hh]
1 .
+ 7 P<.Q€>[961C + 662f + e6lil] (3.31')

Yo = 2(2)@3z6@32(2) (3.35)

The symbol X is the inverse of the matrix element (A(o))ii (38,39).
Due to the presence of the external field, the thermal conductivity
tensor contains three independent components., Following Cooper and

Hoffman (38), we expand } as

A = el )+ x e e a e @) (3.36)

The change in these components due to the introduction of the external

field is denoted as

MA(H) = Axngéa)(l) + Axlgga)(1) + Axtrgfb)(l) (3.37)

where the g}')(k) tensors are defined in Ref. 38 (refer also to Eq.

(3.2) above). The explicit forms for the change in these components are



Figure 3.1.

Geometric field effects arising from the basis functions
ncggow, QCQ, and WQOQ used in the thermal conductivity

calculation. The abscissa is the ratio of the magnetic
field strength to the pressure (in units of tesla/Pa) and
the ordinate denotes the relative change in the :components
of the ) tensor
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DA () = (AA) g+ (ar) g+ (ah))g (3.38)

with
(arpy = ¢, (e5%)
(AA")5 = 0 (3.39)
(aapg = He2C, (£6°)
()5 = - 3l 7 €5(65%) + €, (2530
(03)g = HsC,y (Ec") (3.40)
(Akl)e = Mg 3 C2(£6 )

and

(ax, )

tr3 - 3 ZC(E )+C(2g )
_ . tc
(A g = - HC (g7) (3.41)
r. ), = H, de (et
tr'6 63 °1'°6

The field dependence of Eqs. (3.36)-(3.38) is plotted in Fig. 3.1. The
quantities H3, H5’ and Hg are defined by Egs. (3.27), (3.30), and
(3.33) above,

Ci(x) = xi/(l + x2) , (3.42)

and the field parameters are defined by
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tc _ 1/2 H tc

£, = {(ukT) sngl/he“}(;(—K-y)r;i (3.43)
0

Here,u is the reduced mass, B_ is the Bohr magneton, and 9| and gi.are

the parallel and perpendicular components of the rotational Lande tensor.

The G?C's are given by

2
) g |
et = Lgaanedydyssd Ly, (3. bka)
3~ % TR TR
| |
gte = 1 143 _lL(EJL)} (3.44b)

5 Ell Z'J_ 9|

]

i i
B P A N (3.4hc)
1 1 1

This completes the derivation of the necessary equations.

tc
Gg

The nonsphericity expansion was truncated to second order due to
the rapid convergence of the series. The two terms, 25 and 26’ which
are odd in 2, were included in the expansion because they allow for a
positive change in the thermal conductivity by the field. This can be

observed from Eqs. (3.39) and (3.40).

B. Viscosity
The methods utilized in this section are identical to those of the
preceding section, Therefore, we abbreviate the discussion. The pres-
sure tensor for a dilute gas contains only a kinetic part (see the dis-

cussion of Chapter 11) and is given explicitly by
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P = m | fMoge, (3.45)

where the superscript K indicates the kinetic part of the pressure ten-
sor. Confining our attention to a gas near equilibrium, we can expand
the distribution function about fél). The insertion of the form for

the distortion, ¢ , from Eq. (2.70) in this expression for E(K) yields
u =

p(K) PéK)“ +—§-n}g“) +Z (3.56)
where

pdK) = ker (3.47)

v o= Lo g:_g_(”>—:z ‘u (3.48)

Z = kT, B> 2w (3.49)

0
The quantity 1 determines the coefficient of shear viscosity, i.e.,

=z ©
]
1
N

[

e

(3.50)

with n representing the fourth rank shear viscosity tensor. Equating

Eqs. (3.49) and (3.50), we find that

n = -nkT <M, B>, (3.51)

which is the microscopic form of the shear viscosity tensor. For

isotropic systems, the shear viscosity tensor reduces to a scalar

(2)

multiple of § y 1€,
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n = 158 , (3.52)

where g is the field free viscosity. In the presence of an external
magnetic field aligned along k, the shear viscosity tensor decomposes

into five independent components

b = “]Eéa)(z) * “zgfa)(z) + n32§a)(2) + nhgsb)(Z) + n5§§b)(2) (3.53)

where the g}')(k)'s are defined in Ref. 38.
In order to obtain an approximate solution of Eq. (2.72b), the
distortion, B, is expanded in a complete set of functions (cf. Eq.

(3.10) and the expansion of A). By truncating this expansion to
; * 22@ 52 + 23@ _5_3 (3.54)

where the ¢'s are given in Table 3.2, solving for the expansion coeffi-

cients, and inserting Eq. (3.54) into Eq. (3.51), we obtain:

a0 = Lun % 1s(2) o o 1014(2) (3.55)
ot = o (3.56)
and
e e (R I DN LI
R S LR A O LI

- - v - v (a)
HIT ey, - 0y CplEgdeyy - Cyl265)0,,18,7 (2)
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_ v (b)
+ 1+ e, 215 % (:1(52)<1>12 7 C (E )<I>13]B (2)
s +0,, -0 +C (N0, -+c (eV)e ]B(b)(Z)} (3.57)
12 13 1'527%12 ~ 7 Y153/ 71322 : .
Here,
® = o2 /6. .0 '~ (3.58)
ij i35 )

is a measure of the coupling of the ith and the jth basis functions.

The field parameters, E?, are defined by

£y = {(ukT)'/zengl/ﬁeii}( ;{%y )6} (3.59)
0
where
9 | g 1
& = Lgsa0+-dyLaszZl Ly (3.60)
S I TR |
and
Gy = {2 —1 -J- —ﬂ ) S (3.61)
3 —E- ll. gl. l.

Finally, defining the change in the coefficient of viscosity due to the

introduction of the external field as

(g(ﬂ) N Qo)/no = ( )B(a)(1) + ( )B(a)(z) + ( 3 )B(a)(Z)

b () () 4 05 g @ (3.62)
0



Figure 3.2. Geometric field effects arising from the basis functions
QcOW and @YQ used in the viscosity calculation. The
abscissa is the ratio of the magnetic field strength to
the pressure (in units of tesla/Pa) and the ordinate

denotes the relative change in the components of the n
tensor
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we obtain
An
(=) = FHC, (3.63a)
0
An
(=2) = FHC,(E]) - HC,(e}) (3.63b)
0 ]
An3 v v
(-ﬁ(-)—-) = H3C2(€3) - HZCZ(ZEZ) (3.63c)
An _
(=) = HyCy(ey) - 5 HyC (e)) (3.63d)
0
An
5 _ vy _ l_ \'
with
H, = ¢12/(1 + o, - ¢13) (3.64a)
and
H3 = ¢13/(1 + 0, - 4»]3) . (3.64b)

The field dependence of Eqs. (3.63a)-(3.63e) is plotted in Fig. 3.2.
This completes the derivation of‘the equations necessary for the
viscosity. As in the case of the thermal conductivity, inclusion of
the basis function odd in @ allows for an increase in the value of the

transport coefficient in the presence of an external field.
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C. Numerical Results
To evaluate the required collision integrals, it is necessary to
find a convenient method of specifying the molecular geometries. Such

a method is afforded through the use of a supporting function, h, given

by

h = £+k (3.65)

where & and & are defined in Fig. 2.1 above. Equation (3.62) is easily

inverted (21) yielding

£ = hk + sh/sk . (3.66)

Hence, h completely specifies the geometry of the molecule. Thus, it
is a simple matter to evaluate the bracket integrals given the form of
the supporting function (13).

For the purpose of modeling a symmetric top molecule, we choose to
use a supporting function of the form (13)

t— L] . 3 L1 . 3 - . .
h = a+8, i=1X2 ) (k ei) + 83(k e3) vk e; (3.67)

where the unit vectors ;i extend from the center of a tetrahedron in

the direction of the four vertices. The parameter o determines the
overall size of the molecule, the Bi's are a measure of the molecular
distortions along the corresponding éi’ and y locates the center of mass
which for a symmetric top is confined to lie along the symmetry axis.

We have chosen ; to represent the molecular symmetry axis. In the

3

numerical work on which we report, the quantities a, B], 83, and y were
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treated as free parameters which were varied to fit the available ex-
perimental results. A computer program was written to carry out this
procedure. In short, the program varied the parameters in search of

the minimum of the function
q expy 2
Fla,8,,857) = 1 wily, =y7 )", (3.68)
i=1 .

where n is the number of experimental measurements available on the
system in question (generally n = 3, the field free transport coeffi-
cient and either (Anz/no)Sat and (An4/n0)max for the viscosity or
(AA"/AO)satand(AAl/ 0)Sat for the thermal conductivity). The quantity
W, represents the weight for the experimental results (the field free
transport coefficient, rather arbitrarily, was weighted twice that of
the remaining two experimental values), and ' and y?xP denote the
calculated and experimental quantities, respectively. Finally, all of
the numerical results reported in this chapter were carried out assuming
a temperature of 300°K.

In Table 3.3, we list the systems investigated along with relevant
kinematic parameters. The isotopically substituted methane series was
chosen in order to observe effects related to varying the kinematic
parameters while holding the intermolecular potential fixed (a procedure
justified by the Born-Oppenheimer approximation). The molecules CHF3
and CH3F were chosen as representative oblate and prolate symmetric
tops along with their deuterated counterparts. The molecules NH3 and

ND3>Were chosen because of the unique behavior of the viscosity of

these gases in the presence of a magnetic field (45).
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Table 3.4 contains the results of optimizing the geometries of the
molecules. Two geometries are given for each system, derived separately
from the thermal conductivity results and from the viscosity results.
For most of the systems,vthe agreement between the two geometries is
poor. However, the two geometries obtained for CHh are in reasonéble
agreement as are also the thermal conductivity derived geometries for
CHF3 and CDF3. In the previous work of Verlin et al. (13), the
optimized geometries for CHM’ obtained from the viscosity and the thermal
conductivity experimeﬁtal results, compared poorly. Our agreement for
CHM may be the result of the improved fitting methods employed hefe.

We initiated this study to calculate the effects of field terms
containing Qc. In Table 3.5, are listed the relative contributions of
the three field basis functions for the thermal conductivity. The
basis functions are wgog, 2.8, and chwow and their contributions are
proportional to (H3/A0); (HS/AO), and (HG/AO), respectively (cf.

Egs. (3.38)-(3.41)). From Table 3.5, it is obvious that the dominate
contribution is from the term WQOQ for all of the systems studied. The
contribution of the other two terms is at best two to three orders of
magnitude less. The effect of the ch_polarization is generally ten
times the effect of the chwoy polarization on the $-B effects. In-
tuitively, one would expect the significance of the Q.2 and chwow
polarizations to increase with increasing anisotropy of the inertia
tensor, a measure of which is the parameter T (= li/l" - 1). This is

found to be true. For the CHA series, the contribution of these terms

is largest for CH3T. Overall, the largest contributions are obtained
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in the CHF3 and CDF3 systems where the effect of the Qc

approximately one percent of the dominate WQOQ term. We expect that

Q term is

for more highly nonspherical top molecules such as CH3C1 or CH_Br, the

3
importance of the‘QcQ_and chwow terms will further increase.
Overall, the fitting gave very good results for the case of the
thermal conductivity parameters as seen in Table 3.6. This is a reflec-
tion on our choice of basis functions. The value of AO appears fairly

insensitive to the kinematic parameters. The slight decrease in AO
down the series reflects the 1/V/m dependence in Eq. (3.21). As expected,
the S-B effects show greater variation. In Table 3.7, we list the
characteristic field strengths of the S-B effects.

The two field terms investigated in conjunction with the viscosity
are QPQ, known to be the dominate term, and Qc5M, of interest because
of its QC dependence. The significance of these basis functions is
12 and ¢13, respectively (see Eqs. (3.58), (3.63) and
(3.64) above). From Table 3.8, it can be seen that @

measured by ¢

M is of no im-

portance to the viscosity S-B effects for rigid polyatomics. The whole
effect is adequately handled by the inclusion of the gpg:term (except

in the case of NH, and ND3). As expected, the more nonspherical the

3

molecule, the larger is the coupling of _9@ and E?ﬂ. In the CHh series,

CH3T shows the largest effect.

The results of the fitting to the viscosity data for the CHh
series, and CHF3 and CH3F are very good, as seen in Table 3.9. The no's

in the CHh series shows a slight increase due to the /m dependence in

Eq. (3.55), whereas the S-B effects show a much greater variation in
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this series. Table 3.10 lists the characteristic field strengths of the
Senftleben-Beenakker effects for the viscosity.

Unlike the case of the thermal conductivity, the viscosity calcu-
lations for NH3 and ND3 are very poor. This is not surprising, for it
has long been known that an additional mechanism for building up odd in
Q@ polarizations is at work in NH3 and ND3 which cannot be accounted for
by rigid impulsive collisions. It could be argued that this anomalous
behavior is due to the inversion of NH_,. In order to incorporate this

3

phenomenon into our theory, an inversion term, perhaps of the form
ety = w e e - F L (3.69)

could be included into the RHS of the Boltzmann equation (cf. Eq.

(2.40)). Here,w, represents the inversion frequency of NH3 (or ND3).

|
This expression is similar to those found in master equation approaches
where w|f(1)(E)L)-LC) represents a gain term and wlf(1)(EJLJ+LC)
represents a loss term. The ? operator is obviously diagonal within
our expansion set. It has two eigenvalues, i.e., -2w' for functions
odd in L. (or QC) and zero for functions even in Lc- From its eigen-
values, i is seen to be seminegative definite (as is the Boltzmann
collision operator). Therefore, this term simply adds to the diagonal
matrix elements of the collision operator, increasing its apparent
magnitude by a factor proportional to W Because the S-B effects are
proportional to the inverse of the diagonal matrix elements, a large:

inversion frequency would tend to diminish the importance of the terms

odd in QC such as ch_and chy. For this reason, we expect that some
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other process is contributing to the unusually large odd in @ polariza-
tions existing in the NH3 system,

In conclusion, reasonable results were obtained for all systems
except the viscosity calculations on NH3 and ND3. For the viscosity,
the chw term gave essentially no contribution to the S-B effects. For

the thermal conductivity calculations, the contributions of the Q.02 and

c
chwow terms, although comparable to one another, are very small. The

largest effects were found in the least spherical top molecules such as

CH3T and CHF3.
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Table 3.1. Basis functions, ., used in
the thermal conductivity cal-
culation with their parity,
P, and time reversal, T,
eigenvalues

Basis Function P T
g = (%- Wi -1 -1
Y, = (<e® - 92)_\4 -1 -1
u; = we'o -1 -1
y, = (2> - du -1 -1
25 = 2.8 -1 +1

0
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Table 3.2. Basis functions, ¢., used in

the viscosity calculation
with their parity, P, and
time reversal, T, eigenvalues

Basis Function P T
g = ] + - H
g, = Qpﬂ. +1 +1
23 = chw +1 -1
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Table 3.3. Values for the molecular constants u, llf IH, glf and g"

Molecule

¥ ' 'l o1 9
(amu) (amu 52) (amu Rz)

CHha 8.024 3.213 3.213 0.313 0.313
CHSDa 8.528 b.155 3.213 -0.242 0.313
CH3Ta 9.032 7.297 3.213 -0.138 0.313
co3na 9.536 5.127 6.380 0.199 0.160
coha 10.041 6.380 6.380 0.160 0.160
CD3Ta 10.545 7.490 6.380 -0.136 0.160
CHF3b 35.01 48.60 88.94 -0.036  -0.031
CDF3b 35.52 50.63 89.11 -0.035  -0.031
CH3Fb 17.02 20.25 3.362 -0.062 0.265
co3Fb 18.53 25.31 6.83 -0.050  0.133
NH3b 8.515 1.083 1.70 0.563  0.500
ND3b 10.028 3.28 5.35 0.280  0.250

9Source: Ref. 48.

bSource: Ref. 49,



62

Table 3.4. Optimized molecular potential parameters a, 81, 8., and
Y, obtained from experimental results for the viséosity,
v, and the thermal conductivity, tc
Molecule Data o 81 83 Y
(A) (R) (A) (A)
CHQ v 2.00183 -0.03512 -0.03512 0 a
tc 1.89665 0.09209 0.09209 0
CH,D v 2.00183  -0.03512  -0.03512  0.064°
tc 1.89665 0.09209 0.09209 0.064
CH3T \ 2.00183 -0.03512 -0.03512 0.1212
tc 1.89665 0.09209 0.09209 0.121
CD3H v 2.00183 -0.03512 -0.03512 -0.060°
tc 1.89665 0.09209 0.09209 -0.060
CDA v 2.00183 -0.03512 -0.03512 0°
tc 1.89665 0.09209 0.09209 0
CD3T v 2.00183 -0.03512 -0.03512 0.051
tc 1.89665 0.09209 0.09209 0.051
CHF3 v 2.49470 0.09036 0.09565 -0.10058
tc 2.19359 0.20710 0.16193 -0.12586
CDF3b tc 2.09084 0.20765 0.15190 -0.12366
CH3F \' 2.3030t 0.03873 0.08834 0.06695
tc 2.41038 0.08853 0.18545 0.25833
co3|=b tc  2.21842  0.16444  0.11510  0.13394
NH3 v 2.12740 -0.00027 0.00061 0.00056
tc 2,30175 0.01236 0.06857 0.00509
ND3 Y 2.19400 -0.00028 0.00068 0.00064
tc 2.20711 0.05109 0.03960 0.05273

a

bExperimental results for the viscosity not available.

Source: Ref. 48.



63

Table 3.5. Theoretically determined contributions of the
three field terms y,, Y., and 26’ to the S-B
effects on the thermal €onductivity as measured
by (H3/>\0), (HS/AO), and (H6/>\°), respectively

H H H
Molecule ( )\—3) X 103 ( -}\i) x 103 ( 5—6—) X 103
0 0 0
CH, 1.80 10732 1078
CH.D 1 -h =
3 .71 1 x 10 2 x 10

CH, T 1.13 3 x 1073 3 x 107
CDH 1.10 5 x 107 3 x 1077
D, 0.80 10730 1078
cD,7 0.81 1 x 10°¢ 5 x 1076
CHF 1.86 7 x 1073 L x 1076
COF, 1.77 7 x 1073 1x 107°
CH,F 1.15 1 x 1073 1 x 107
CD3F 1.12 5 x T 6 x 1077
NH, 0.23 2 x 1078 7 x 1078
ND 0.30 8 x 1077 1% 107




Table 3.6. Comparison of theoretical and experimental (in parentheses when ava:lable) results for
A [2]/A[0], BN 83|, and ax,

o’
. [2] AX
A AX AA
Molecule Ay X 10° ( -%3—-) x 10° (-——l ) x 100 (—=) x 100 ( —t0) x 10°
| Ao A A
0 sat 0 sat 0 max
(cal/cme-s-°K)

CH, 8.80 1.80 -1.80 _ -2.70 1.28

(8.75) (-1.72) (-2.75)2
CH,D  8.53 1.71 -1.71 -2.56 1.22
CH T 8.29 1.13 -1.13 -1.69 0.80
CD,H 8.07 1.10 -1.10 -1.65 0.78
cD 7.87 0.80 -0.80 -1.20 0.57

4 (8.77)2 (-2.05)°  (-3.20)°

co,T 7.67 0.81 -0.80 -1.21 0.57
CHF 3.16 1.86 -1.86 -2.79 . 1.32

(3.11) (-1.90) (-2.95)
COF, 3.45 .77 -1.78 -2.66 1.26

(3.44) (-1.72)P | (-2.70)P
CH.F 3.74 1.15 -1.15 -1.72 0.82

3 (5 68)° © (-0.98)P (-1.85)



CD3F » L, 214 1.12 -1. 12 -1. 68 0.80
(4. 20) (-1 06) (-1. 73)
NH3 5. 80 0.23 -0, 23 -0 35 0.16
(5. 83) (-0. 15) (-0. 40)
ND3 5. 81 0.30 =0. 30 -0. l|6 0.22
(5. 76) (-0. 24) (-0. 50)°
a
Source: Ref. 50.
b
Source: Ref. 49.
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Table 3.7. Characteristic field strengths for the S-B effects,
(H/P)!, where i denotes the component of the )A ten-
sor and j denotes the contributing basis function.
For i = fl or _|_, the value quantity listed is the

field strength at one~half the saturation value of

AX;, and for i = tr the quantity listed is the

field strength at the maximum value of Mtr

[ I [ 1
Molecule (-I-;-) X 103 (-:;l) x 103 (g) X 103, (TI;") X 103
6 kd

5 3
(testa/Pa) (tesla/Pa) (tesla/Pa) (tesla/Pa)

CH,, 3.64 - 3.93 2.28
CH,D 11.29 - 0.80 7.05
CH,T 14,23 - 0.58 8.89
CD3H A 5.65 - 0.79 3.53
'cnh 6.27 - 0.67 3.92
CD,T 18.96 - 1.50 11.84
CHF 5 21.72 - 12.87 13.57
CDF 19.92 - 3.35 12.44
CH,F 27.08 - 6.45 16.92
CD,F 29.11 - 3.60 18.19
NH, 2.97 - 0.52 1.85
ND, 5.05 - 0,92 . 3.15
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1 1 tr tr tr
(%) x 103 (%) x 103 (g) x 105 ) 103 (%) x 103
6 6

5 3 5
(tesla/Pa) (tesla/Pa) (tesla/Pa) (tesla/Pa) (tesla/Pa)

0.65 3.93 2.24 0.65 3.93
3.71 0.80 6.94 3.7 0.80
L.32 0.58 - 8.75 4.32 0.58
0.72 0.79 3.48 0.72 0.78
0.7k 0.67 3.86 0.74 0.67
L.oh 1.50 11.66 4. o4 1.50
3.34 23.87 13.36 3.34 23.87
3.05 3.35 12.25 3.05 3.35
12,87 6.45 16.65 12.87 6.45
84.39 3.60 17.90 84.39 3.60
0.01 0.52 1.82 0.01 0.52

0.27 0.92 3.10 0.27 - 0.92
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Table 3.8. Theoretically derived contribu-
tions of the field terms ¢7 and
93 to the $-B effects on the
viscosity as measured by ¢,, and
®._, respectively
13
Molecule d., X 103 ® X 103
12 13
CH, 0.96 10710
CH,D 1.56 5 x 10710
CH,T 2.30 2 x 1072
CDH 1.17 3 x 10710
co,, 0.61 10°1°
0,7 0.89 1 x 10710
CHF 1.90 3 x 10710
CH,F 1.05 2 x 10710
NH 8 x 1077 10723
ND b x 1072 10724




Table 3.9. Comparison of theoretical and experimental (in
parentheses when available) results for n,.,
(215100 an., an,, or d ’
no no ) n-I » n2’ n3’ nh’ an n5
[2]
n An
Molecule N, X 10“ ( —9——-) X 103 ( 1 ) X 1012
0 0] "o
”0 . sat
(gm/cmes)
CH 1.1 6 -6
4 15 0.9 3 x 10
(1.09)
CH,D 1.19 1.56 0.16
CH, T 1.22 2.30 0.58
CD,H 1.26 1.17 9 x 1072
‘coh 1.29 0.61 1 x 1078
0,7 1.32 0.89 3 x 1072
CHF 1.55 1.90 0.01
3 (1.48)P
CH.F 1.27 1.05 0.01
3 (1.17)P
NH, 1.05 8 x 1072 3 x 10717
(0.98)
ND, 1.08 4 x 1077 2 x 1071
(0.98)

a

Source: Ref. 51,

bSource: Ref. 52,



(0.43)P

sat n0 sat
-0.96__ -0.96
(-0.99)
-1-56 -1056
-2.30 -2.30
-1.17 -1.17
-0.61 -0.61
-0.89 -0.89
-1.90 -1.90
(-1.90)
~1.05 -1.05
(-1.05)
-8 x 1077 -8 x
(0.39)b
-4 x 107° -4 x

1072

48

.78
.15
.58
.31
45

.95

.52

1072




N

Table 3.10. Characteristic field strengths for the S-B effects,
(H/P)j, where j denotes the component of the n tensor.
For j= 1, 2, and 3, the quantity listed is the field
strength at one-half the saturation value of An;, and
for j = 4 and 5 the quantity listed is the fielé strength
at the maximum value of Anj
Molecule (1;-) ('—;-) X mL* (g) X 10L* (%) X loL* (%) X lol‘
1 2 L 5
(tesla/Pa  (tesla/Pa) (tesla/Pa) (tesla/Pa) (tesla/Pa)
CHQ - 1.43 0.72 1.43 0.72
CH3D 0.24 7.52 3.76 7.52 3.76
CH3T 0.31 14,35 7.18 14.35 7.18
CD3H 0.07 2.73 1.36 2.73 1.36
CD& - 1.58 0.79 1.58 0.79
CDBT 0.04 7.09 3.55 7.09 3.55
CHF3 0.31 19.33 9.67 19.33 9.67
CH3F 3.45 9.52 L.76 9.52 L.76
NH, 3x103 7x107° 4x107° 7x107° L4x107
ND 6x10° 7x107° 4x10° 7x107° h4x107°
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IV. THERMAL-VISCOUS EFFECT IN CHIRAL MOLECULES

In this chapter, we will investigate the existence of a thermal-
viscous effect in a dilute gas of chiral molecules. The thermal-viscous
effect is an example of a cross coupling in the linear phenomenological
behavior of the system. Many such effects are conceivable, some are
well-known; the most common of these being the thermal-diffusion effect,
or equi?alently, the Dufour effect. However, many couplings can be
shown to vanish in systems having a high degree of molecular and
spatial symmetry. The general symmetry arguments used in discussing
these effects are embodied in Curie's Principle (53). Examples of these
arguments will be given below for the specific problem of a thermal-
viscous effect. |In order to see these cross effects, certain symmetries
of the system must be broken. For example, it will be shown below that
systems which are invariant to rotations or systems which are invariant
under inversions can have no thermal-viscous couplings. To break these
symmetries, we must introduce an external field and consider a gas of
chiral molecules.

First, a discussion on the existence of a thermal-viscous effect in
a gas of chiral molecules in a magnetic field will be given. Then a
calculation of the thermal-viscous coefficient will be carried out along
the lines followed in the evaluation of the expressions of the viscosity
and thermal conductivity in the previous chapter. Finally, numerical
resul ts fbr the thermal-viscous coupling in model systems will be

presented.
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A. Theory

The entropy production in systems near equilibrium can be expressed

as (54)

d ] .

TS T Ekak (4.1)
where Si is the entropy produced by the system, Jk can be identified
as a generalized flux and Xk its corresponding generalized force. Ex-
plicitly, for a gas with nonzero temperature and velocity gradients,

Eq. (4.1) becomes

_ . _ s.0
EE—Si = ng_ __T :Vu (4.2)

~—
=\ o

where q represents the microscopic expression of the heat flux vector
defined in the discussion of the thermal conductivity of symmetric top

molecules and

A o

is the traceless symmetric part of the viscous pressure
tensor. In Eq. (4.2), it is assumed that the divergence of the velocity

field vanishes. Rewriting Eq. (4.2) in the form

AT LIC S .3
we find that

& =g (4. ha)

gt = zs (4.4b)

and
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Voo -1y (4.5a)

>
]

x* = - 1% (4.5b)

The generalized forces and fluxes are related through the linear

phenomenological relations

A AR AT & (4.6a)

and

t tv ,

=L Xt (4.6b)

Here gvv is a second rank tensor related to the thermal conductivity
tensor, étt is a fourth rank tensor related to the coefficient of vis-
cosity tensor, and EVt and gtv, which are third rank tensors, are the
thermal-viscous coupling coefficients. Since the two coefficients,

Vt and gtv, are related through Onsager (55)-Casimir (56) relations,

L
we need only to concentrate our efforts towards the calculations of EVt.
The method of calculating étv is similar to that for calculating th.
The coefficient th explicitly couples the heat flux to a nonequilibrium
distortion proportional to the velocity gradients,

In general, all fluxes can conceivably couple to all forces.
However, Curie (53) has shown that many of the L's vanish in systems
with a high degree of spatial symmetry. Consider an orthogonal trans-
formation of the cartesian coordinate frame. This transformation will

be represented by the second rank tensor éT. If the microscopic equa-

tions of motion for the system are invariant in form under the action
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of é+ on the coordinate system, then we say that the transformation é+
reflects a spatial symmetry of the system. For example, the system
composed of N molecules in the absence of an external field is invariant
under general rotations of the coordinate system. Equivalently, instead
of considering a coordinate transformation, we can imagine an actual
transformation of the system. The action of this transformation on a
vector in the system is given in terms of the transpose of the second
rank tensor QT, denoted by é. The tensor A transforms a vector, say

t
Iﬁ1), to a new vector Iﬁl) (1)

, which is related to T through the

relation

LA W AL 4.7)
(n)
(n)

In general, let I represent an nth rank tensor. Then the transforma-

tion, é, acts on T as
1
1™ - @™ (4.8)
' .
where I(n) denotes the transformed tensor, Iél is the determinate of

A, and the quantity € is zero for polar tensors and one for axial
tensors. The symbol (+)" denotes a sequential contraction of the right

(n)

hand indices of each of the n A's into the n indices of T , l.e.,

(@reny - T A A, A T

Jydgeedp i it dahs Jntn Tit2eety
12 n

(4.9)

Because the linear phenomenological relations are simply macroscopic

manifestations of the microscopic equations of motion, the force-flux
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relations of Eq. (4.6) must be invariant to transformations reflecting
spatial symmetries of the system. Therefore, if A (or é+) reflects a
spatial symmetry of the system, the coupling coefficients of Eq. (4.6)

must satisfy the relations

L= [Af@"()"L (4.10)

where n is the tensor rank of L. This equation represents the mathemati-
cal formulation of Curie's Principle.
- We now wish to discuss the implication of Curie's Principle for a
dilute gas. This will be accomplished by considering three examples:
(1) A dilute gas of achiral molecules is invariant under inver-
sions. The transformation corresponding to an inversion can be repre-

sented by 1, where

()., = -8, (4.11)

with det(l) = -1. Applying Curie's Principle in the form of Eq. (4.10)
(n)

to this system and replacing A with | and T with the coupling

coefficients, we obtain

vt

L AL (4.12a)

and

LY = - LY (4.12b)

where the fact that gvv, gtt, gtv’ and gtt are all polar tensors has

vt

been used. Equation (4.12) requires that ;tv =L "~ =0, which allows

us to reexpress the linear relations as
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A

>

(4.13a)

and

t tt

L t

d :X (4.13b)

These are the familiar expressions (with no cross couplings) of Fourier's
Law and Newton's Law of friction, respectively. In systems with parity
symmetry, the thermal-viscous couplings vanish.

(2) A dilute gas of chiral molecules has no parity symmetry.
However, the system is invariant under géneral rotations. Denoting the
general rotation transformation by 5(9,¢,¢), where 0, ¢, and ¥ are the

usual Euler angles, implementation of Curie's Principle demands

R332V = vt (4.14)

This implies that EVt is proportional to the third rank isotropic

tensor,lél@xﬁjk = Eijk’ the Levi-Civita density) where Lt is antisymmetric

on all pairs of indices. Therefore, the product th:Xt

, which is
proportional toLg:ét, vanishes due to the symmetric nature of ét (refer
to Eq. (4.5)). Similar arguments show the coupling through Ltv to
vanish. For this system, the linear relations of the form in Eq. (4.13)
hold.

From these first two examples, we see that the thermal-viscous
couplings vanish in the presence of either a rotational or an inver-
sional symmetry. In order to observe a thermal-viscous effect, both of
these symmetries muﬁt be destroyed. This assertion is born out in the

last example.
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(3) A dilute gas of chiral molecules in the presence of an exter-
nal magnetic field contains neither inversional or rotational symmetry.
The chirality of the molecule has eliminated the parity symmetry and
the field has broken the isotropy of the space. The remaining symmetry
is the invariance to rotations about the field. Denoting this trans-
formation by R(0,4,0) (where the field is taken to lie along the k

direction) and applying Curie's Principle to th, we find that

Lt = (R(0,6,00)3(0)3E . (4.15)

This requires th to be proportional to tensors of third rank which are
isotropic about the field. All such tensors are formed from the three

elementary tensors

k (4.16a)

o = B (4.16b)
and

y-|£2) - -k x g(3) (4.16¢)

which are individually isotropic about the k direction. Thus, Curie's

Principle allows for the existence of a thermal-viscous coupling, but

requires the coupling coefficient, LVt, to be a functional of k, géz),

¥£2), i.e.,

vt _ gvt(l:’gliZ)’géZ)) . : (4.17)

fir-
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At this point, we can now deduce the general form of LVt. Knowing

2)

that EVt is rank 3 and a functional of Kk, =(2), and V( allows us to

write

LYY = Akkk + BkU(Z) + ol + oy Picr eky? 4 Fﬁy(z) + ey Pk
(4.18)

Further, the fact that th is symmetric and traceless on its last pair

of indices reduces Eq. (4.18) to

e R 0 G P Y )

This is the final form for th. From Eq. (4.19), the following rela-

tions between the components of th are obtained

Vt _ _ l vt = - l vt -

333 = =7 bany 5 L3 = L (4.20a)

vt _ vt _ vt _ vt _

b1z = Loz = Ly = Ly = by (4.20b)
and

vt _ _ vt _ vt _ vt _

L123 - L213 L132 L231 L3 . (4.20c)

This is identical to the form for EVt obtained by de Groot and Mazur
(54). Also from Eq. (4.19), the components L and L, are seen to be
odd in the field, whereas the component L3 is even in the field.

To obtain a microscopic expression for the thermal-viscous coupling

coefficient, we proceed in a manner similar to that of the previous
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derivations of the coefficients of shear viscosity and thermal conductiv-
ity. We begin with the explicit form of the heat flux vector, g, from

Eq. (3.4), namely

1/2
- - 2kT 2 -2 -
a = - nkT (= W3- W)+ W<E, /kT> - B /kT), 8> L (B.21)

When the distortion,

1/2
(HT) " a.y 0 (4.22)

is inserted into this expression, we obtain the microscopic analogue to

Eq. (4.6a)

Voo okt2( 2Ty & - 2 - . (- 772
4= kT (== )M 5 - W)+ WIKE, /K> - B /KT) A (- T %91

1/2
2, 2kT 5_.,2
kTS WF - W)+ WIKE,  /kT>
-1.0
- Eint/kT),E_>:(- T 'V u . (4.23)
Here,Eint is the internal energy of the chiral molecule. From

Egs. (4.5), (4.6) and (4.23), we obtain

1/2
vt _ - 22, 2kT 5 .2 _ vt
L = nkT (--—-m ) <W( 5 W) + g(<eint/k1> Eint/kT) B > . (b4.24)

where th is required to satisfy the ]inear equation

which is derived in Chapter 11. Equation (4.24) is the desired micro-

scopic expression for the thermal-viscous coupling coefficient.
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The quantity EVt, which satisfies Eq. (4.25), is generated by the
methods used in the previous sections. It is expanded in a truncated
basis set forming a matrix equation, which can be solved using the
inversion technique of Cooper and Hoffman (38). From Eqs. (4.24) and
(4.25), it is realized that for a nonzero th to exist, there must be a
coupling between basis terms of the form y?y_and yﬁ<E> - E). Because
these terms have different parity symmetries, the coupling would be
impossible were it not for the chirality of the molecules (refer to
example 1 above). However, the collision operator still commutes with
the general rotation operator. Thus, it is impossible to couple these
terms through the collision operator alone since they transform as basis
elements belonging to different irreducible representations of the full
rotation group. Therefore, we must seek a coupling of these two térms
through the field operator. This is not surprising; it is exactly what
examples 2 and 3 prepared us for. After all, it requires both the
molecular chirality and the presence of the external field in order to
observe a thermal-viscous coupling.

Because the field effects are at best 2nd order in the nonsphericity,

vt

L " also is at best a 2nd order effect. The expansion set must contain

an element, say X, such that

_\gog «— X = WK - E) (4.26)

where the two headed arrows represent a coupling. However, no such X
exists. For example, let X be a basis function whose tensorial struc-

ture is given by WW. Due to the rotational symmetry of the collision
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N QW= T 7 g 21!

Figure 4.1, The various thermal-viscous coupling routes contained in the
basis set listed in Table 4.1
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operator (30), the bracket integral of two tensor functions is zero
unless their direct product contains a basis element belonging to the
totally symmetric representation of the rotation éroup. Both the
direct products of y?ﬂ_with WW and W with WW contain such a basis
element. However, for rigid chatterless interactions, the integrand of
the bracket integral of W with WW is proportional to ﬁ +k xk which
vanishes identically. Therefore, the term, WW, does not give rise to
a second order coupling. Similar arguments show that other plausible
choices for X also do not give rise to a second order coupling.

Because of this, the best we can hope for is a third order coupling,

i.e.,
Wy o g X, e WKE - E) (4.27)
We will investigate three such couplings. These three avenues are
contained in the following expansion of th
th = 9 022 +9 o%B. + 6,098, + 2

with the gi's given in Table 4.1 along with their parity and time
reversal eigenvalues. The three possible couplings in the expansion
above are shown diagrammatically in Fig. 4.1. The dashed lines in
Fig. 4.1 denote couplings forbidden because their direct products do
not contain a basis for the totally symmetric representation of the
rotation group. The solid lines denote possible couplings, where the

letter in parentheses indicates the mode of coupling. For instance,
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(P) represents a coupling due to the chirality of the molecular poten-
tial, whereas the term (A) denotes a coupling through the anisotropy of
the interaction. The Roman numerals indicate the various pathways.
Below, terms with a superscript |, 11, or 11l will refer to the pathway
I, tl, or {1, respectively.

Insertion of the expression for B, Eq. (4.28), into the micro-

scopic expression for LVt, Eq. (4.24), results in

2
¢ = Xqsp, + 3B . (4.29)

4v/2

The gi‘s can be expanded as
B, o= 8+l 4!, - (1.30)

due to the three possible coupling routes. Solving Eq. (4.25) for Eh

and 25, using standard techniques, we find that:

(A/e 8..0

33922) (955043832991 ~ O45053035%91)L, (k.31a)

(L=
I -
1

l == -
By = (8/833855)(8),,,8530350,1 = 0)50439350,)L (4.31b)

Ann

L= e, () 1kkk - RuPY + rac, (2650 (8,) - € (65)Ch(Ey) - €y (Ey)

I

- colegty (e 1Pk + ) 4 160(5) + coleg)cy (e

- 260 (26,)C4(8,) - €, ()¢ (g,) + %-c,(za3)c,(az)1{g§2)k +\y(2),

==



=

and
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L:{EQE - %- =ﬁ M} 4 L, {U(Z)k + @U(z)} + L. {V(z)k + \/(2)} , (4.32)
" _ ;

By, = (8/6550..)(0550,30398,; = 0),50530346851)L (4.33a)
I .

By = (8/83509)(8),0530396871 = 0),0),30390,1)L ), (4.33b)

c (g ) - 3 ¢4 (g )c (57) + = c (£7) + Cy (a )C (&7)]

AAn

x {kik - ﬁgéz)} + 1= 1 (85 = €(285) + 3 €, (g5)C ()

1
2

+

7 C1(2650C(67) + 4 € (6)) + 5 Co(E3)C, (£7) + 5 Co(285)C, ()]

x P+ Prathegte) ¥ cpzey) - ggle))

i 1 1
- 7 ColE3)Cpley) - 5-co(za3)co(a7) + 5 ¢ (g5)c, (&)

1 ey (2g)c, (e ) 1ty Pk + ﬁZ)}

4+ -
(2) ()7 . k(@) 120 & (@)
Ly ki - 5 kg 2y Ly w2k + g, Pl Tk H Y, Y

(4.34)

gl
= =(8/6gg079) (850568670710 (4.35a)

gl
= (8/0gg077) (04856967971 Ly 1 (h.355)
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Ly = 2o ) 1kkk - 4 kP + 3 1e (g (e) + colgg)e, (6)
- ¢ ey r By Liege (1 - cyle))

6 7 1605 o(&7
b ¢ (e)cy (e 1Pk + W)y

”'{;leli . (2)} . LIII{U(Z) g(z)} . LIII{V(Z)k +\/(2)}
(4.36)

Here, A = 6]][6h4655 - 655], and the eij's and the Ci(x) functions are
defined in the previous chapter. Equations (4.28)-(4.35) relate the
thermal-viscous coupling coefficient to the collision integrals. In the
following section, the collision integrals are evaluated for various
model systems.

In concluding this section, we remark that the thermal-viscous
effect in rigid chatterless systems is third order in the nonsphericity
of the potential. For systems interacting through more realistic
potentials (i.e., soft potentials or rigid potentials where chattering
is considered), the thermal-viscous effect could conceivably be a
second order effect. However, the requirement that an external field
be present excludes the existence of a thermal-viscous coupling at any

order lower than second in molecular nonsphericity.

B. Numerical Results
The theory presented above for the thermal-viscous effect assumes

the chiral molecules to behave kinematically like symmetric tops. We
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(Z)

O (NDy)

(CD3)

Geometry of the chiral molecules used in the calculation of
the kinematic parameters in Table 4.2. Here My = 18 amu,
My = 12 amu, 6 = 1,911k radians (tetrahedral ‘angle), and

212 = 1.48 A, The values of M3 and 233 depend on the choice
of z and are listed in Table 4.2
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have ghOSen to base the numerical work on the molecular system, C Z CD3
ND2 0D, where Z will equal H, D, F, C1, and Br. Setting Z equal to D
yields the totally deuterated analqgue of 1-amino-ethanol. This chiral
molecule is chosen because it is nearly a symmetric top. The approxi-
mate geometry of this mojecule is given in Fig. 2.2. In Table 2.2, we
list the relevant kinematic parameters.

In order to model the geometry of the above system, we use the

supporting function (13)
ho= o+ Tk e o) 4 y(k +ey) (.37)
i

where the quantities in this expression are defined in the numerical
section. of Chapter IIl. Due to the lack of experimental results on
chiral systems, we will not be able to utilize a fitting prégram similar
to the one used in the symmetric top studies above to determine molecular
parameters. For this reason, we will calculate the size of the thermal-
viscous coupling for several choices of the Bi parameters in Eq. (4.37).
The values of o are chosen to be in reasonable agreement with the values
for the symmetric top molecules of the last chapter, and is determined
from the molecular geometry in Fig. 4.2, These values for o, the Bi's,

and vy are given in Table 4.3, along with the dimensionless parameter, X,

x = [ m oty - e/ell (4.38)

i<j

Here,JLi represents the distance from the center of mass to the molecular

surface along the ith axis for a system described by the supporting



Figure 4.3. The geometric field dependence of the thermal-viscous coupling coefficient
' arising from coupling route | for various values of py7. The abscissa is the
ratio of the magnetic field strength to the pressure ?nn tesla/Pa) and the
ordinate is the magnitude of the L; 's
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Figure 4.4. The geometric field dependence of the thermal-viscous coupling coefficient

arising from coupling route Il for various values of pgy. The abscissa is

the ratio of the magnetic field strength to the pressure (in tesla/Pa) and
the ordinate is the magnitude of the L;"s
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Figure 4.5. The geometric field dependence of the thermal-viscous coupling coefficient

arising from coupling route [ll for various values of p33. The abscissa is

the ratio of the magnetic field strength to the pressure” (in tesla/Pa) and
the ordinate is the magnitude of the Lg"'s
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function in Eq. (4.37). The quantity, X, is a measure of the molecular
chirality.

Finally, we will write the thermal-viscous coupling coefficient,
vt

L, as
vt 1 vt
L = ] Lty L (4.39)
i=|
where
2 . .
vt oo K sl 4 38y (4.40)

and B; and B; are given by Eqs. (4.31)-(4.35). Then EVt will be
evaluated as if the Li's are unity. This separates the geometric field
dependence from the interaction dependent collision integrals. The
form of the field dependence of the Li's, for various values of the
ratio of the field parameters (i.e., Gij = gi/gj), is plotted in

Figs. 4.3 through 4.5.

In Table 4.4, the magnitudes of'Bh and B5 are given for the various
systems and geometries. Table 4.5 lists the magnitudes of the L?t's
for the three modes of coupling. For all of the systems and all of the
geometries, the values of these quantities are seen to be very small.
However, as expected, the magnitudes of these quantities increase'with
increasing x, the molecuiar chirality. From Table 4.5, we see that the
" dominate coupling is through avenue |. The strength of this coupling

is approximately two orders of magnitude greater than schemes Il and

{1l, whose importance are nearly identical to one another. Avenue |
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couples the heat flux to a shear gradient through the basis functions
g?g_and wgog. These terms are the dominate field terms for the viscos-
ity (g?g) and the thermal conductivity (ygog) as was noted in Chap-

ter 111,

To appreciate the size of this effect, these quantities should be
compared to the values of the coefficients of the viscosity, n (or
equivalently Lt 2Tn), and the thermal conductivity, A {or equiva-
lently LV o= TZA). The coefficients, n and A, are easily qbtainedkfrom
these results because the expansion set contéins the functlions required
for their calculation, as indicated in Table 4.1. Table 4.6 displays
the values of n, A, and vt along with the dimensionless quantity

6 to 10_7. As

Lvt/VLVVLtt. The largest values for this ratio are ~10°
a comparison, the smallest Senftleben-Beenakker effect ratios, given as
(W) - L5 /Lt for the viscosity and (LYV(H) - LYV)/LYY for the
thermal conductivity, that can be detected experimentally are wlO-h.
Therefore, even in the systems with large chiralities, the thermal-
viscous effect is still approximately two orders of magnitude too small
to be detected. However, it is conceivable that for more general
asymmetric top, chiral molecules, or. for systems where a second order
coupling exists (cf. Eq. (4.26)) the magnitude of this coupling could
be measurable.

Finally, one last point of interest should be mentioned. Figure
4.6 is a plot of the chirality of the molecule, x, versus the dimen-

sionless quantity, LVt//vaLtt. From this graph, it can be seen that

these two variables are linearly related. Therefore, x can be
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considered as an estimate to the magnitude of the thermal-viscous

effect.



99

Table 4.1. Basis functions, $;, used in the thermal-viscous
calculation with their parity, P, and time reversal,
T, eigenvalues. Also listed is the relationship to
basis functions used in Chapter 111

Basis Functions P T Relationship to Previous Work
0 . ..
g, = WY 1 4+ ¢, (viscosity)
_ 0 | S
9, =920 1+ g, (viscosity)
g3 = w_of_z -1 -1 Uy (thermal conductivity)
o) = w(s/2 - wz) nL ) B (thermal conductivity)

. = E(<Ei>0 - Ei) -1 -1y, 4Ty, (thermal conductivity)

bg = 22 -1 -1 25 (thermal conductivity)

g, = QM *1 41 g, (viscosity)
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Table 4.2, Values for the molecular constants mg3, 2235
v, !y, Iy, and the molecular center of mass,
c.m. (cf. Fig. 4.5)
a b
Z m3 233 u 1 i l"° c.T.
(amu) (A) (amu) (amu AZ) (amu AZ) (A)
H 1 1.07 33.5 57.1 105.2  -0.382
D 2 1.07 34.0 59.1 105.2 -0.360
F 19 1.35 42.5 100.3 105.2 -0.012
Cl 36 1.77 50.75 164.0 105.2 +0.364
Br 80 1.94 72,95 253.5 105.2 +0.881
3Source: Ref. 57.

the central C atom along the 223 bond.

bQuantity listed is the distance of the c.m. from
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Table 4.3. Values of the potential parameters for the thermal-
viscous calculation

Z o B By By By Y X
(A)  (A) (A) (A) A) - (A)

H 3.1 0.20 0.20 0.05 0.20 -0.382 0 .
" 0.19 0.20 0.05 0.21 I 8.7 x 103
" 0.15 0.20 0.05 0.25 " 1.1 x 107
" 0.05 0.20 0.05 0.35 " 2.3 x 107/
D 3.1 0.20 0.20 0.05 0.20 -0.360 O o
" 0.19 0.20 0.05 0.21 " 6.7 x 10
" 0.5 0,20 0.05 0.25 @ " 8.2 x 102
" 0.05 0.20 0.05 0.35 " 1.8 x 107/
F 3.2 0.20 0.20 0.15 0.20 «0.12 0 1
" 0.19 0.20 0.15 0.21 " 6.7 x 10_13
" 0.15 0.20 0.15 0.25 " 1.0 x 107
m o 0.05 0.20 0.15 0.35 " 4.6 x 10
cl 3.3 0.20 1,20 0.30 0.20 +0.364 0 10
" 0.19 0.20 0.30 0.21 Y 1.0 x 107
M 0.15 0.20 0.30 0.25 " 1.2 x 10
" 0.05 0.20 0.30 0.35 " 2.9 x 1077
Br 3.4 0.20 0.20 0.50 0.20 +0.881 0 i
" 0.19 0.20 0.50 0.21 ™ 1.1 x 103
" 0.15 0.20 0.50 0.25 " 1.3 x 107/
" 0.05 0.20 0.50 0.35 " 3.6 x 10




Table 4.4. Values of By, and B_. for the individual coupling routes 1, |1, and 11|

5

z X B, B B, 5 B, B
(%) (%) (%) (%) (%) (a2
Ho0 1 107 10 2 10727 o 0% 10'26_19 10726
8.7 x 10_g -6 x 10_15 =1 x 10_,, 3 x10_,0 -7x 10_]7 1 x 10 17 1 x 10
1.1 x 107, -7 x 1013 -2 x 10713 5 x 10_1  1x 10}/ 2 x 10717 "2 x 10
2.3 x 10 -2 x 10 -6 x 10 5 x 10 1 x 10 6 x 10 6 x 10
D 0 1 10'29_17 1072 1077 ¢ 10'26_18 10726 19 10’26_19
6.7 x 10 g -4 x 10011 x0Tl -3 x 10008 -7 x 10017 1x 1072 1 x 10
8.2 x 10_7 -6 x 10 13 -2 x 10 13 =7 x 10_, 0 -2 x 10_.¢ 2 x 10_,¢ 2 x 10
1.8 x 10 -2 x 10 -5 x 10 1 x 10 3 x 10 5 x 10 5 x 10
F o 1 1070 o 100 02 10 10 28_20 10728
6.7 x 10711 -2x 10015 -b x 1017 3 x 10770 -8 x 1003 1x 10228 1 x 10
1.1 x 109 -3 x 100 -7 %100l 9 x 10013 -2 x 1003 x 1005 1 x 1001
L6 x 10 -8 x 10 -2 x 10 -4 x 10 -1 x 10 7 x 10 7 x 10
¢l o 10 10‘28_17 10728 - 107%7_o 10'26_18 w0 10
1.0 x 10_g -4 x 10_15 -9 x 10_15 2 x10_,5 b x 10 17 L x 10_34 b x 10_17
1.2 x 102 -h x 10012 -9 x 10017 3x 100 7 x 107} 2 x 107 2 x 10}
2.9 x 10 -1x 10713 3% 10 8 x 10 2 x 10 7 x 10 7 x 10
Br 0 5 1072 107 1072 o 107 10726 19 10726
1.1 x 103 -4 x 10737 -0 x 10717 5x 10 tx 100l -3k 1073 -3x 10
1.3 x 10_] -h x 10012 -8 x 10110 -6 x 10117 -1 x 1002 -7 x 1070 -7 x 10
3.6 x 10 -1 x 10 -2 x 10 -2 x 10 -4 x 10 -2 x 10 -2 x 10

201
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Table 4.5. Magnitude of the thermal-viscous coupling through
the individual routes 1, |1, and 111

. y v x,
or .2 on .2 )
(gm+°K/s”) (gm+°K/s) (gm+°K/s“)

~24 -21 | -20
H 0 1 1077 107, 1077 1,
8.7 x 10_g -2 x 10_g -8 x 10_,5 1 x 10_.7
1.1 x 10_7 =2 x 10_g 1 x 10_10 1 x 10_10

2.3 x 10 -7 x 10 1 x10 L x 10
D 0 11 107, 107, 10720,
6.7 x 10_g -1 x 10 g =7 x 10_.5 9 x 10_,.,
8.2 x 105 -2 x 10 g =2 x 10_.7 1 x 10 .0

1.8 x 10 -5 x 10 3 x10 L x 10
F 0 " 1072, 10'2“_15 1072
6.7 x 10_ -h x 10,2 -9 x 10 3 1x 107,
1.1 x 10_ -8 x 1070 -2 x 107, 1 x 102,73

4.6 x 10 -2 x 10 -1 x 10 6 x 10
i 0 10 10'26_11 10'2“_13 1072,
1.0 x 10_g -1x 10 g b x 1072 3 x 1007,

1.2 x 10 -1 x 10 8 x 10 1 x 10
2.9 x 107/ 3 x 1078 2 x 10710 5 x 10710
Br 0 9 10722 10720, 1074,
1.1 x 1077 -1 x 107 1 x 1072 -1 x 1075
1.3 x 10_¢ -9 x 10_7 -1 x 10_9 =3 x 10_,3

3.6 x 10 -3 x 10 -4 x 10 -0 x 10
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Values of n (= Ltt/ZT), A (= LVV/TZ), LYY and the dimen-

sionless quantity LVt/VLttLvv versus the molecular

chirality, x

Table 4.6,

Lvt/ LttLVV

2)

LVt
(gm+°K/s

n
(gm/cmes)

(cal/cmes«°K)
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V. ORIENTATIONAL CORRELATION TIMES (58)

The problem of calculating the orientational correlation time T
for a &th rank spherical harmonic of a molecule in a liquid dates back
to Debye (59), who assumed the molecular rotation is governed by a dif-
fusion equation. More recent attempts to determine T, theoretically fol-
low two approaches: hydrodynamic and kinetic theory. The hydrodynamic
calculations set an ellipse (60) in uniform rotation in order to deter-
mine the rotational friction constants, defined as the proportionality
between the applied torque and the angular velocity. The orientational

correlation time then follows, since 1T, and the friction coefficient

'3
are linearly related. Both stick (60) and slip (61) boundary conditions
have been employed. Comparison with experiment gives stronger support
to the slip models,

The alternative approach to molecular rotation is kinetic theory.
This is the approach we choose. Until our own work, the existing theory
consists of Chandler's rough-sphere Enskog calculation (62). This
model has been quite successful in fitting the data; however, there is

some ambiguity as to the definition of molecular roughness and its

relationship to the nonspherical shape of the molecule.

A. Theory
We propose to calculate the collective orientational correlation
time TZ for the &th rank Legendre polynomial Pz(cose) for hard ellipsoid
molecules in a bath of hard spheres at liquid densities. Here,

cosf = z + e, where e is a unit vector along the symmetry axis of the

ellipsoid and z is a space fixed reference axis. The orientational
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correlation time is defined by

c _ ® : 2
T, = Jo dt<D£D£(t)>/<Dz> (5.1)
where
N
Dz = jZ] Pl(cosej) . (5.2)

The subscripts on the angles here refer to a particular ellipsoid and
8(t) is the value that 8 evolves to in a time t according to the
mechanics of the system. The brackets indicate an average over an
equilibrium ensemble representing the fluid mixture.

We find it convenient to interpret the brackets as inner products

for Dirac vectors, i.e.,

GH> = <G> = Jd_x_”*B Fég“s) GH (5.3)

(N+B)
eq

where F is the canonical equilibrium distribution function for a
system of N ellipsoids and B bath molecules, §N+B denotes the complete
set of phase variables, and |G> and |H> are Dirac vectors.

One approach for the calculation of the collective orientational
correlation time is the single variable Mori formalism (63) (the Mori
formalism is outlined in Appendix B, along with other techniques

utilized in this paragraph). In this method, as espoused by Kivelson

and Keyes (64), we define projection operators Py and Q, by

Py = lvz><o£|/<0202> (5.4a)

and
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Q = t-P, . (5.4b)

The Liouville equation for a dynamical ket vector |G> in differential

form is
adTlG(t)> = iLla(e)> (5.5)

where L is the Liouville operator for the system. This equation is
equivalent to Eq. (2.2). Following the usual in manipulations, one
begins with Eq. (5.5) for |Dl(t)> to extract an exact equation for the

DQ time correlation function

t .
d _ . iQl< -
T5 <0, 10, (t)> = Jo dr{<A e =" |A>/<0,D >1<D, [0, (¢t - 1)> . (5.6)
Here
|A> = iLp> = ng_»_j . i lePl(cosej)> (5.7)

is the implicit time derivative of |D£>. Invoking standard arguments
about the Markovian behavior of the memory function (Appendix B), one
can remove the convolution part of Eq. (5.6) to obtain the simple

transport eq